线段树专题

前言

本文章主要由浅入深的介绍线段树的各种操作,由于线段树特别重要。支持几乎所有的区间操作,所以笔者也会分享一些理解,同时存在难以避免的错误,还请读者指出!

线段树的定义

线段树的定义:使用树形结构通过维护操作子节点的信息,来统计区间信息的树形结构。

为什么需要线段树

支持在时间复杂度 <math xmlns="http://www.w3.org/1998/Math/MathML"> n ( l o g n ) n(logn) </math>n(logn) 内完成单点(区间)修改、单点(区间)查询、区间翻转、区间最值、区间众数、区间数点等一系列区间操作,具有可拓展、灵活操作等特点。

: 线段树支持的操作过多,本文不会提及所有操作!


如何实现基本的线段树

建树

建树非常简单!就是划分线段

我们将划分区间的操作称之为裂开区间

将其画成树形结构更加的形象

  1. 首先通过上图我们可以发现,其实线段树是一种堆式存储 的形式 , 我们设父节点的编号是 <math xmlns="http://www.w3.org/1998/Math/MathML"> u u </math>u 的话 , 那么我们的左孩子 是 <math xmlns="http://www.w3.org/1998/Math/MathML"> u < < 1 u << 1 </math>u<<1 , 右孩子 是 <math xmlns="http://www.w3.org/1998/Math/MathML"> u < < 1 ∣ 1 u << 1 | 1 </math>u<<1∣1(位运算不懂的,请查bing)。
  2. 其次通过上图我们发现区间只有一个数的结点,那就是叶子结点 ,这些叶子结点只存储值 ,当然我们也可以看成它是存储的区间信息(个人觉得这样更好理解)。

我们知道了存储方式 ,以及每个结点存储的数据,那么我们就可以建树

  1. 递归建树
C++ 复制代码
void build(int u , int l , int r){

	tr[u] = {l , r , 0 , 0 };
	if (l == r) return ;

	int mid = (l + r) >> 1;           // 区间裂开

	build(ls , l , mid);
	build(rs , mid + 1 , r);
}

区间修改、查询

这里给出两种区间修改的方式 , 请按照情况选择。

  1. 差分 , 将区间操作转化为单点操作。
  2. 懒标记 , 优化未进行的操作。

差分

先介绍第一种方法,差分 , 我们可以对原序列进行差分。

  • 修改操作步骤

    • 对原序列进行差分
    • 对于区间 <math xmlns="http://www.w3.org/1998/Math/MathML"> [ l , r ] [l , r] </math>[l,r]修改只需要对 <math xmlns="http://www.w3.org/1998/Math/MathML"> l l </math>l点加上 C ,再对 <math xmlns="http://www.w3.org/1998/Math/MathML"> r + 1 r + 1 </math>r+1 点减去C即可( <math xmlns="http://www.w3.org/1998/Math/MathML"> r + 1 ≤ n r+1 \leq n </math>r+1≤n 注意边界
  • 查询

    • 单点查询 直接求 <math xmlns="http://www.w3.org/1998/Math/MathML"> [ 1 , i ] [1 , i] </math>[1,i] 的前缀和 , 这个操作的是时间复杂度是 <math xmlns="http://www.w3.org/1998/Math/MathML"> O ( l o g n ) O(logn) </math>O(logn)
    • 区间查询 那么就需要一点技巧这里给出步骤,并附上证明
      • 步骤

        1. 考虑维护两棵线段树 ,一棵线段树维护序列差分区间和 <math xmlns="http://www.w3.org/1998/Math/MathML"> ∑ i = l r d i \sum_{i=l}^r d_i </math>∑i=lrdi , 另外一棵线段树维护 <math xmlns="http://www.w3.org/1998/Math/MathML"> ∑ i = l r d i ∗ i \sum_{i = l}^r d_i* i </math>∑i=lrdi∗i
        2. 求区间和只需要对使用公式 <math xmlns="http://www.w3.org/1998/Math/MathML"> ( r + 1 ) ∑ i = 1 r d i − l ∑ i = 1 l − 1 d i − ( ∑ i = 1 r d i ∗ i − ∑ i = 1 l − 1 d i ∗ i ) (r + 1)\sum_{i = 1}^{r} d_i - l\sum_{i = 1}^{l-1} d_i - (\sum_{i=1}^r d_i *\ i - \sum_{i=1}^{l-1} d_i*\ i) </math>(r+1)∑i=1rdi−l∑i=1l−1di−(∑i=1rdi∗ i−∑i=1l−1di∗ i)
      • 证明

        1. 区间和我们可以表示成这样 (笔者是类比树状数组求区间和的方法,可能存在错误)

        <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> ∑ i = l r ∑ j = 1 i d j = ( ( r + 1 ) ∑ i = 1 r d i − ( l − 1 + 1 ) ∑ i = 1 l − 1 d i ) − ( ∑ i = 1 r d i ∗ i − ∑ i = 1 l − 1 d i ∗ i ) \sum_{i=l}^r\sum_{j = 1}^i d_j = ( (r + 1)\sum_{i = 1}^{r} d_i - (l - 1 + 1)\sum_{i = 1}^{l-1} d_i ) - (\sum_{i=1}^r d_i *\ i - \sum_{i=1}^{l-1} d_i*\ i) </math>i=l∑rj=1∑idj=((r+1)i=1∑rdi−(l−1+1)i=1∑l−1di)−(i=1∑rdi∗ i−i=1∑l−1di∗ i)
        核心思想:求前缀和再做差

    第一种方法代码不给出,主要就是介绍思想 , 代码可以自行网络查找。如果遇到这种情况,可以借助另外一种数据结构更为方便。

懒标记

区间修改、查询

先瞅瞅懒标记tag

先好好说说

  • 懒标记
    • 是什么? 用于记录历史修改操作的区间标记,大白话就是把之前没有进行的操作进行一下。

    • 有什么用? 用于记录历史标记,对区间进行修改时减少许多不必要的操作。

      例如:我一直对区间 <math xmlns="http://www.w3.org/1998/Math/MathML"> [ l 1 , r 1 ] [l_1 , r_1] </math>[l1,r1] 操作 , 但是我只询问 <math xmlns="http://www.w3.org/1998/Math/MathML"> [ l 2 , r 2 ] [l_2 , r_2] </math>[l2,r2] , 明显 <math xmlns="http://www.w3.org/1998/Math/MathML"> [ l 1 , r 1 ] [l_1 , r_1] </math>[l1,r1] 那个区间不需要修改

    • 什么时候使用它? 在需要对这个区间操作的时候,如果存在懒标记,那么将子节点的信息算好,懒标记再下传即可。

    • 核心要点:

      • 懒标记是给子节点用的!
      • 下传懒标记操作,实际是先通过操作父结点懒标记 时算好子结点 的信息,再将父结点懒标记传给 子结点(这里称维护结点信息)。
      • 这个操作往往发生在查询和修改的时候(一般会另外写一个pushdown函数)

上文指到的是加法标记 ,其实线段树可以维护非常多的标记。本人目前还最多接触过同时维护两种运算标记。 凡是父节点信息可以通过子结点拼凑的,都是使用线段树维护。 这是一点对线段树的理解!


理解了懒标记,就好做区间修改和区间查询了。

  • 区间修改

其实看到图就是怎么修改了。

  1. 先给定一个区间 [1 , 4] , 操作方式就是懒标记停在[1 , 3] , 因为我们不要用到这个区间。 [4 , 4] 这个区间操作我们其实也可以理解成停在 [4 , 4].
  2. 注意在第二次操作的时候 , 我们对 [2 , 5] 进行操作。这时候,我们需要操作这个区间的元素 [1 , 3] , 那么在操作这个区间时 ,也就是 的时候 ,我们就要将懒标记下传,维护信息,然后再对对应区间进行操作(因为笔者不会如何制作动图,不然就非常的直观 , 水平菜了)。
  • 区间查询

    其实区间查询就是区间修改的阉割版,不是吗?我只需要一路将需要处理的懒标记处理了,然后发挥对应区间的信息即可。

给定一张图,来看看如何进行区间查询

我们发现,我们将 [4 , 5] 标记维护完了,父节点和子节点的信息。 怎么维护的呢? 一般步骤:

  1. 通过父节点懒标记维护子节点信息
  2. 将父节点的懒标记下传给子节点
  3. 将父节点的懒标记清除
  4. 请记住一点,父节点的信息一定是维护正确的,懒标记是用来给子节点用的。父节点拥有的懒标记,一定给父节点用 ,这一点非常重要

注: 懒标记本质就是未操作完的动作,被保存了下来

  • 参考代码
C++ 复制代码
 #include <iostream>
 #include <cstring>
 #include <algorithm>

 #define LL long long
 #define ls u << 1
 #define rs u << 1 | 1

 const int N = 100010;

 int n , m; 	
 LL a[N];
 struct Node{
     int l , r;
     LL sum , tag;
 }tr[4 * N];

 void pushup(Node &u , const Node &L , const Node &R){

     u.sum = L.sum + R.sum;

 }

 void puhsdown(int u){

 if (tr[u].tag){

         tr[ls].sum += (tr[ls].r - tr[ls].l + 1) * tr[u].tag;
         tr[rs].sum += (tr[rs].r - tr[rs].l + 1) * tr[u].tag;
         tr[ls].tag += tr[u].tag;
         tr[rs].tag += tr[u].tag;
         tr[u].tag = 0;
   }
 }

 void modify(int u , int l , int  r , LL c){

     if (l <= tr[u].l && tr[u].r <= r){						// 修改区间信息
             tr[u].sum += (tr[u].r - tr[u].l + 1) * c;			// 维护结点信息
             tr[u].tag += c;										// 打上结点标记
             return ;
     }

     puhsdown(u);

     int mid = (tr[u].r + tr[u].l) >> 1;

     if (r <= mid) modify(ls , l , r , c);
     else if (l > mid) modify(rs , l , r , c);
     else{														// 区间左右孩子都有 , 裂开
             modify(ls , l , mid , c);
             modify(rs , mid + 1 , r , c);
     }

     pushup(tr[u] , tr[ls] , tr[rs]);
 }


 LL query(int u , int l , int r){

     if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;

     puhsdown(u);               // 懒标记下传

     int mid = (tr[u].l + tr[u].r) >> 1;

     LL sum = 0;
     if (r <= mid) sum = query(ls , l , r);
     else if (l > mid) sum = query(rs , l , r);
     else {
             sum += query(ls , l , mid);
             sum += query(rs , mid + 1 , r);
     }

     pushup(tr[u] , tr[ls] , tr[rs]);

     return sum;
 }

学完可以去刷【模板】线段树 1这道题。

线段树的应用

区间最值

这个维护就比较的简单 , 因为区间最值是通过子节点拼凑出来的信息,也就是说,[3 , 5] 的最大值是 [3 , 4 , 5] 三个结点的信息拼凑出来的,这样只需要向上 pushup 即可。

就像这样 , 通过子节点不断向上维护即可。

学完可以去刷这道题扶苏的问题 , 这题有点毒瘤。

区间最大子段和

区间最大子段和 ,可以参照这道题小白逛公园。 即,快速求出给定区间 [l , r] 的最大子段和。

对于这题也是一个区间信息拼凑的问题。

求出最大子段和的方法 :

<math xmlns="http://www.w3.org/1998/Math/MathML"> m a x = m a x ( t r [ l s ] . m a x , t r [ r s ] . m a x , t r [ l s ] . m a x + t r [ r s ] . m a x ) max = max(tr[ls].max , tr[rs].max , tr[ls].max + tr[rs].max) </math>max=max(tr[ls].max,tr[rs].max,tr[ls].max+tr[rs].max)

  • 为什么是这样的呢 ?我们来分类讨论可能的情况
    1. 左边最大子段和是整个区间的最大子段和

2. 右边最大子段和是整个区间的最大子段和

3. 左边区间和右边区间拼接起来,组成区间最大子段和

因为我们需要考虑三种情况,所以我们的维护方式这样的。且除此之外,没有其他的情况了。

但是问题来了 , 如何维护区间最大左子段和、区间最大右子段和

  • 对于区间最大左子段和 我们可以通过分类讨论,来确定
  1. 直接将左孩子的最大左子段和上传

2. 将左孩子的整个区间和sum右孩子的最大左子段和拼凑上来

对这两种情况,我们肯定要贪心的取 求出区间最大左子段和方法:

<math xmlns="http://www.w3.org/1998/Math/MathML"> t r [ u ] . l m a x = m a x ( t r [ l s ] . s u m + t r [ r s ] . l m a x , t r [ l s ] . l m a x ) tr[u].lmax = max(tr[ls].sum + tr[rs].lmax , tr[ls].lmax) </math>tr[u].lmax=max(tr[ls].sum+tr[rs].lmax,tr[ls].lmax)

维护区间最大右子段和方法,就是类似的啦。 直接给出方法:

<math xmlns="http://www.w3.org/1998/Math/MathML"> t r [ u ] . r m a x = m a x ( t r [ r s ] . s u m + t r [ l s ] . r m a x , t r [ r s ] . r m a x ) tr[u].rmax = max(tr[rs].sum + tr[ls].rmax , tr[rs].rmax) </math>tr[u].rmax=max(tr[rs].sum+tr[ls].rmax,tr[rs].rmax)

如何维护区间和 ,那就非常简单啦。前面已经讲过了。(如果是新手,还请扎扎实实地学,一步一步来)

  • 参考代码
ini 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>


#define ls u << 1
#define rs u << 1 | 1
#define LL long long


const int N = 500010;
const LL INF = 1E18;


int n , m;
int a[N];

struct node{
	
	int l , r;
	LL sum , lmx  , rmx , mx;

}tr[4 * N];


void pushup(node &T , const node &L , const node &R){

	T.sum = L.sum + R.sum;
	T.mx = std::max(std::max(L.mx , R.mx), L.rmx + R.lmx);
	T.lmx = std::max(L.lmx , L.sum + R.lmx);
	T.rmx = std::max(R.rmx , R.sum + L.rmx);

}

void build(int u , int l , int r){
	tr[u] = {l , r , a[l] , a[l] , a[l] , a[l]};
	if(l == r) return ;

	int mid = (l + r) >> 1;

	build(ls , l , mid);
	build(rs , mid + 1 , r);

	pushup(tr[u] , tr[ls] , tr[rs]);
}


void modify(int u , int x , LL c){

	if(tr[u].l == x && tr[u].r == x) {
		tr[u] = {x , x , c , c , c , c};

		return ;
	}
	

	int mid = (tr[u].l + tr[u].r ) >> 1;

	if(x <= mid) modify(ls , x , c);
	else
		modify(rs , x,  c);

	pushup(tr[u] , tr[ls] , tr[rs]);
}

node query(int u , int l , int r ){

	if(l <= tr[u].l && tr[u].r <= r) return tr[u];

	int mid = (tr[u].l + tr[u].r) >> 1;

	if(r <= mid) return query(ls , l , r);
	if(l > mid) return query(rs , l , r);

	node T ;

	pushup(T , query(ls , l , mid) , query(rs , mid + 1 , r) );

	return T;
}


int main(){

	std::ios::sync_with_stdio(0);
	std::cin.tie(0);
	std::cout.tie(0);

	std::cin >> n >> m;

	for (int i = 1; i <= n; i ++ ) std::cin >> a[i];

	build(1 , 1 , n);

	while(m -- ){
		int opt , l , r;
		std::cin >> opt >> l >> r;

		if(opt == 1){
			if(l > r) std::swap(l , r);
			std::cout << query(1 , l , r).mx << '\n';
		}else
			modify(1 , l , r);
	}


	return 0;
}

区间gcd

懒标记

对于gcd(a , b) 存在一些性质 ,比如 gcd(a , b , c) = gcd(gcd(a , b) , c) 如果你对gcd 不了解的话 ,请你看我的关于gcd 和 lcm 相关结论和性质的介绍。

那么这就是区间信息的维护 , 需要的话加上懒标记对吧 ,所以比较简单。

差分维护

我们介绍另外一种,比较简单的维护方法的。

  • 引入gcd性质

    <math xmlns="http://www.w3.org/1998/Math/MathML" display="block"> g c d ( a 1 , a 2 , a 3 . . . . , a n ) = g c d ( a 1 , a 2 − a 1 , . . . . . a n − a n − 1 ) gcd(a_1 , a_2 , a_3 .... , a_n) = gcd(a_1 , a_2 - a_1 , .....a_n - a_{n - 1}) </math>gcd(a1,a2,a3....,an)=gcd(a1,a2−a1,.....an−an−1)

    即原序列的gcd 也是差分的gcd

    这种做法的延展性也非常好,直接维护序列差分信息。

    1. 求区间和 ,这个非常好求。前面讲过,只需要维护两棵线段树即可。
    2. 区间修改,差分的区间修改,只需要进行单点修改即可.
    3. 区间gcd 查询 , <math xmlns="http://www.w3.org/1998/Math/MathML"> g c d ( a [ l ] , g c d ( b l + 1 , b l + 2 . . . . , b r ) ) gcd(a[l] , gcd(b_{l + 1} , b_{l + 2}.... , b_r)) </math>gcd(a[l],gcd(bl+1,bl+2....,br))这样求出即可。 本人对于这种做法理解也不是特别深刻,建议去b站找相关视频再理解理解哔哩哔哩

无法维护通过子节点维护区间信息的情况

一种做法 :分块、莫队

另外一种可能的做法 : 线段树

通过题目给出的一些信息也可以发现一些性质,从题设的性质出发,找到突破口。 P4145 上帝造题的七分钟 2 / 花神游历各国 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

这个题目需要发现一个性质:

  1. 题设给出数据范围最多 <math xmlns="http://www.w3.org/1998/Math/MathML"> 1 0 12 10^{12} </math>1012 , 那么开方多少次就是1了呢(因为1开方不变)?

只需要6次开方 就可以到1 所以我们可以考虑直接暴力区间修改,序列中所有的数,每个数最多可以开方6次 ,那么意味着区间修改是常数级别的。总的时间复杂度还是 <math xmlns="http://www.w3.org/1998/Math/MathML"> O ( n l o g n ) O(nlogn) </math>O(nlogn) , 所以考虑直接暴力区修。 2 . 区间和, 每次区间修改之后,pushup维护区间和即可。

这里推荐董哓算法的讲解

总结

线段树,还支持其他非常多的操作,无法一一列举。原因有二 ,一是、太多操作无法一一列举,情况太多。二是 、 笔者本身实力有限,暂时无法介绍更加深入的运用。类似于zkw 线段树、区间众数,李超线段树、线段树分裂等等算法,还请读者自行了解!祝大家 RP++

相关推荐
肥猪猪爸1 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
readmancynn2 小时前
二分基本实现
数据结构·算法
萝卜兽编程2 小时前
优先级队列
c++·算法
盼海2 小时前
排序算法(四)--快速排序
数据结构·算法·排序算法
一直学习永不止步2 小时前
LeetCode题练习与总结:最长回文串--409
java·数据结构·算法·leetcode·字符串·贪心·哈希表
Rstln3 小时前
【DP】个人练习-Leetcode-2019. The Score of Students Solving Math Expression
算法·leetcode·职场和发展
芜湖_3 小时前
【山大909算法题】2014-T1
算法·c·单链表
珹洺3 小时前
C语言数据结构——详细讲解 双链表
c语言·开发语言·网络·数据结构·c++·算法·leetcode
几窗花鸢3 小时前
力扣面试经典 150(下)
数据结构·c++·算法·leetcode
.Cnn3 小时前
用邻接矩阵实现图的深度优先遍历
c语言·数据结构·算法·深度优先·图论