LeetCode-48. 旋转图像【数组 数学 矩阵】

LeetCode-48. 旋转图像【数组 数学 矩阵】

题目描述:

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]

输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]

输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

提示:

n == matrix.length == matrix[i].length

1 <= n <= 20

-1000 <= matrix[i][j] <= 1000

解题思路一:一行代码!Python zip函数图一乐【zip函数实现主对角线翻转,[::-1]实现垂直翻转】

python 复制代码
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        matrix[:] = [list(row)[::-1] for row in zip(*matrix)]
      
# 实现效果一样
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix)
        # 主对角线翻转
        for i in range(n):
            for j in range(i):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
        # 垂直翻转
        for i in range(n):
            matrix[i][:] = matrix[i][::-1]

时间复杂度:O(n^2^)

空间复杂度:O(1)

解题思路二:其实我们也可以先水平轴翻转,让后主对角线翻转。

python 复制代码
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        n = len(matrix)
        # 水平翻转
        for i in range(n // 2):
            for j in range(n):
                matrix[i][j], matrix[n - i - 1][j] = matrix[n - i - 1][j], matrix[i][j]
        # 主对角线翻转
        for i in range(n):
            for j in range(i):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
# 实现效果一样
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        matrix[:] = list(zip(*matrix[::-1]))

时间复杂度:O(n^2^)

空间复杂度:O(1)

解题思路三:原地旋转

https://leetcode.cn/problems/rotate-image/solutions/526980/xuan-zhuan-tu-xiang-by-leetcode-solution-vu3m

python 复制代码
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        n = len(matrix)
        for i in range(n // 2):
            for j in range((n + 1) // 2):
                matrix[i][j], matrix[n - j - 1][i], matrix[n - i - 1][n - j - 1], matrix[j][n - i - 1] \
                    = matrix[n - j - 1][i], matrix[n - i - 1][n - j - 1], matrix[j][n - i - 1], matrix[i][j]

时间复杂度:O(n^2^)

空间复杂度:O(1)

相关推荐
LNTON羚通37 分钟前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
哭泣的眼泪4082 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
清炒孔心菜2 小时前
每日一题 LCR 078. 合并 K 个升序链表
leetcode
Microsoft Word3 小时前
c++基础语法
开发语言·c++·算法
天才在此3 小时前
汽车加油行驶问题-动态规划算法(已在洛谷AC)
算法·动态规划
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
Guofu_Liao5 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
茶猫_5 小时前
力扣面试题 - 25 二进制数转字符串
c语言·算法·leetcode·职场和发展
肥猪猪爸7 小时前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
readmancynn7 小时前
二分基本实现
数据结构·算法