【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Jupyter 代码片段 1:定义简单的Series

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]))
print()
print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]).dropna())

运行结果:

Jupyter 代码片段 2:Series的索引、自定义索引

Series的索引支持自定义,可以通过索引访问各个成员、进行切片操作等。

python 复制代码
from numpy.random import default_rng

print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]).index)
rng = default_rng()
print()
s = pd.Series(rng.standard_normal(5), index=["a", "b", "c", "d", "e"])
print(s)
print()
print(s[0])
print()
print(s[1:3])
print()
print(s["c"])
print()
print(s.keys())
print()
print(s.index)

运行结果:

Jupyter 代码片段 3:简单直方图的绘制

使用1000个标准正态分布的样本点,绘制直方图:

python 复制代码
s = pd.Series(rng.standard_normal(1000))
s.hist()
plt.show()

运行结果:

Jupyter 代码片段 4:DataFrame的构造、访问和映射

python 复制代码
from math import tau
from numpy.random import default_rng

rng = default_rng()
df = pd.DataFrame(
    {
        "Number": 1.0,
        "String": "foo",
        "Angles": np.linspace(0, tau, 5),
        "Random": pd.Series(rng.standard_normal(5)),
        "Timestamp": pd.Timestamp("20221020"),
        "Size": pd.Categorical(["tiny", "small", "mid", "big", "huge"])
    }
)

print(df)
print()
print(df["Size"])
print()
print(df["Random"].mean())
print()
print(df.describe())
print()
sizes = {"tiny": 4, "small": 8, "mid": 12, "big": 16, "huge": 24}
df["Size"].map(sizes)

运行结果:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
逐步前行28 分钟前
C数据结构--排序算法
c语言·数据结构·排序算法
lskisme31 分钟前
springboot maven导入本地jar包
开发语言·python·pycharm
开心-开心急了1 小时前
pyside6实现win10自动切换主题
开发语言·python·pyqt·pyside
mortimer1 小时前
一键实现人声伴奏分离:基于 `uv`, `FFmpeg` 和 `audio-separator` 的高效解决方案
python·ffmpeg·音视频开发
wudl55661 小时前
Pandas-之数据可视化
信息可视化·数据分析·pandas
_dindong2 小时前
笔试强训:Week-4
数据结构·c++·笔记·学习·算法·哈希算法·散列表
Sunhen_Qiletian2 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
程序员大雄学编程2 小时前
用Python来学微积分34-定积分的基本性质及其应用
开发语言·python·数学·微积分
Q_Q5110082852 小时前
python+django/flask的莱元元电商数据分析系统_电商销量预测
spring boot·python·django·flask·node.js·php
林一百二十八3 小时前
Python实现手写数字识别
开发语言·python