【深耕 Python】Data Science with Python 数据科学(8)pandas数据结构:Series和DataFrame

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Jupyter 代码片段 1:定义简单的Series

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]))
print()
print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]).dropna())

运行结果:

Jupyter 代码片段 2:Series的索引、自定义索引

Series的索引支持自定义,可以通过索引访问各个成员、进行切片操作等。

python 复制代码
from numpy.random import default_rng

print(pd.Series([1, 2, 3, "foo", np.nan, "bar"]).index)
rng = default_rng()
print()
s = pd.Series(rng.standard_normal(5), index=["a", "b", "c", "d", "e"])
print(s)
print()
print(s[0])
print()
print(s[1:3])
print()
print(s["c"])
print()
print(s.keys())
print()
print(s.index)

运行结果:

Jupyter 代码片段 3:简单直方图的绘制

使用1000个标准正态分布的样本点,绘制直方图:

python 复制代码
s = pd.Series(rng.standard_normal(1000))
s.hist()
plt.show()

运行结果:

Jupyter 代码片段 4:DataFrame的构造、访问和映射

python 复制代码
from math import tau
from numpy.random import default_rng

rng = default_rng()
df = pd.DataFrame(
    {
        "Number": 1.0,
        "String": "foo",
        "Angles": np.linspace(0, tau, 5),
        "Random": pd.Series(rng.standard_normal(5)),
        "Timestamp": pd.Timestamp("20221020"),
        "Size": pd.Categorical(["tiny", "small", "mid", "big", "huge"])
    }
)

print(df)
print()
print(df["Size"])
print()
print(df["Random"].mean())
print()
print(df.describe())
print()
sizes = {"tiny": 4, "small": 8, "mid": 12, "big": 16, "huge": 24}
df["Size"].map(sizes)

运行结果:

参考文献 Reference

《Learn Enough Python to be Dangerous------Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

相关推荐
Pyeako11 分钟前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
OPEN-Source13 分钟前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek
廖圣平14 分钟前
从零开始,福袋直播间脚本研究【七】《添加分组和比特浏览器》
python
B站_计算机毕业设计之家14 分钟前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts
mr_LuoWei200930 分钟前
python工具:python代码知识库笔记
数据库·python
weixin_3954489131 分钟前
cursor日志
人工智能·python·机器学习
天天爱吃肉82181 小时前
【跨界封神|周杰伦×王传福(陶晶莹主持):音乐创作与新能源NVH测试,底层逻辑竟完全同源!(新人必看入行指南)】
python·嵌入式硬件·算法·汽车
岱宗夫up1 小时前
Python 数据分析入门
开发语言·python·数据分析
码界筑梦坊1 小时前
325-基于Python的校园卡消费行为数据可视化分析系统
开发语言·python·信息可视化·django·毕业设计
历程里程碑1 小时前
普通数组----轮转数组
java·数据结构·c++·算法·spring·leetcode·eclipse