机器学习每周挑战——旅游景点数据分析

数据的截图,数据的说明:

复制代码
# 字段    数据类型
# 城市    string
# 名称    string
# 星级    string
# 评分    float
# 价格    float
# 销量    int
# 省/市/区 string
# 坐标    string
# 简介    string
# 是否免费  bool
# 具体地址  string

拿到数据第一步我们先导入数据,查看一下数据的分布,类型等

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt



data = pd.read_excel("旅游景点.xlsx")
pd.set_option("display.max_columns",100)
# print(data.head())

print(data.info())
print(data.isnull().sum())

接下来我们来看具体的问题:

复制代码
# 问题(先大概分析一下)
# 1、全国景点分布 (我们分析城市的分布即可)
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
# 3、景区价格分析 (我们分析价格因素)
复制代码
# 问题看完之后,我们开始对数据进行预处理
# 由于星级对我们问题的分析帮助很大,所以我们无法用删除,或者众数等方式填充,因此我们用无来填充,将其划分为一个新的类别
复制代码
data["星级"] = data["星级"].fillna("无")
print(data["星级"].isnull().sum())
复制代码
至于简介和地址,缺失数据无关紧要,这里我们可以选择用无来填充,也可以用删除来处理,为了不破坏数据的完整性,这里我选择用无来填充
复制代码
data = data.fillna("无")
# print(data.isnull().sum())
# 这样我们的数据就没有了缺失值
# print(data.info())
复制代码
# 1、全国景点分布 (我们分析城市的分布即可)
复制代码
scenic = data['城市'].value_counts().sort_values(ascending=False)
plt.figure()
scenic.plot(kind='bar',stacked=False,colormap='viridis',figsize=(10,6))
plt.title("各个城市景点数量分布图")
plt.xlabel('城市')
plt.ylabel('景点个数')
# plt.show()
复制代码
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
复制代码
# data['销量'] = data['销量'].astype(int)   这种转换类型的方法,如果有无法转换的值,则无法转换
data['评分'] = pd.to_numeric(data['评分'], errors='coerce')
data['销量'] = pd.to_numeric(data['销量'],errors='coerce')
data['价格'] = pd.to_numeric(data['价格'],errors='coerce')

city_sales = data.groupby('城市')['销量'].sum()
city_sales = city_sales.sort_values(ascending=False)

plt.figure()
city_sales.plot(kind='bar',stacked=True,colormap='plasma',figsize=(10,6))
plt.title('各个城市景点门票销量')
plt.xlabel('城市')
plt.ylabel('销量')
复制代码
# 从销量可以看出北京,上海,江苏,四川,陕西,广东的销量较高,因此,我们着重分析这六个地方的景点评分
复制代码
shanghai = data[data['城市'].str.contains('上海')]
beijing = data[data['城市'].str.contains('北京')]
jiangsu = data[data['城市'].str.contains('江苏')]
sichuan = data[data['城市'].str.contains('四川')]
shanxi = data[data['城市'].str.contains('陕西')]
guangdong = data[data['城市'].str.contains('广东')]

shanghai_group = shanghai.groupby('名称')['销量'].sum().reset_index()
beijing_group = beijing.groupby('名称')['销量'].sum().reset_index()
jiangsu_group = jiangsu.groupby('名称')['销量'].sum().reset_index()
sichuan_group = sichuan.groupby('名称')['销量'].sum().reset_index()
shanxi_group = shanxi.groupby('名称')['销量'].sum().reset_index()
guangdong_group = guangdong.groupby('名称')['销量'].sum().reset_index()

shanghai_sort = shanghai_group.merge(shanghai[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
beijing_sort = beijing_group.merge(beijing[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
jiangsu_sort = jiangsu_group.merge(jiangsu[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
sichuan_sort = sichuan_group.merge(sichuan[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
shanxi_sort = shanxi_group.merge(shanxi[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
guangdong_sort = guangdong_group.merge(guangdong[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)

shanghai_sort.reset_index(drop=True,inplace=True)
beijing_sort.reset_index(drop=True,inplace=True)
jiangsu_sort.reset_index(drop=True,inplace=True)
sichuan_sort.reset_index(drop=True,inplace=True)
shanxi_sort.reset_index(drop=True,inplace=True)
guangdong_sort.reset_index(drop=True,inplace=True)


plt.figure()
plt.bar(shanghai_sort['名称'],shanghai_sort['销量'])
for i, v in enumerate(shanghai_sort['评分']):
    plt.text(i, shanghai_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('上海市销量排名前十的景点')
plt.xticks(rotation=45)


plt.figure()
plt.bar(beijing_sort['名称'], beijing_sort['销量'])
for i, v in enumerate(beijing_sort['评分']):
    plt.text(i, beijing_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('北京市销量排名前十的景点')
plt.xticks(rotation=45)


plt.figure()
plt.bar(jiangsu_sort['名称'], jiangsu_sort['销量'])
for i, v in enumerate(jiangsu_sort['评分']):
    plt.text(i, jiangsu_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('江苏省销量排名前十的景点')
plt.xticks(rotation='vertical')


plt.figure()
plt.bar(sichuan_sort['名称'], sichuan_sort['销量'])
for i, v in enumerate(sichuan_sort['评分']):
    plt.text(i, sichuan_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('四川省销量排名前十的景点')
plt.xticks(rotation=45)


plt.figure()
plt.bar(shanxi_sort['名称'], shanxi_sort['销量'])
for i, v in enumerate(shanxi_sort['评分']):
    plt.text(i, shanxi_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('陕西省销量排名前十的景点')
plt.xticks(rotation=45)


plt.figure(figsize=(10,6))
plt.bar(guangdong_sort['名称'], guangdong_sort['销量'])
for i, v in enumerate(guangdong_sort['评分']):
    plt.text(i, guangdong_sort['销量'][i] + 0.2, str(v), ha='center')

plt.xlabel('名称')
plt.ylabel('销量')
plt.title('广东省销量排名前十的景点')
plt.xticks(rotation=45)

由此,我们结合这几个分析来回答这几个问题:

相关推荐
junnhwan3 分钟前
【苍穹外卖笔记】Day04--套餐管理模块
java·数据库·spring boot·后端·苍穹外卖·crud
程序员清风16 分钟前
Dubbo RPCContext存储一些通用数据,这个用手动清除吗?
java·后端·面试
摇滚侠21 分钟前
Spring Boot 3零基础教程,条件注解,笔记09
java·spring boot·笔记
南瓜小米粥、22 分钟前
从可插拔拦截器出发:自定义、注入 Spring Boot、到生效路径的完整实践(Demo 版)
java·spring boot·后端
Huangmiemei91124 分钟前
Spring Boot项目的常用依赖有哪些?
java·spring boot·后端
天天摸鱼的java工程师32 分钟前
接口联调总卡壳?先问自己:真的搞清楚 HTTP 的 Header 和 Body 了吗?
java·后端
真的想不出名儿38 分钟前
上传头像到腾讯云对象存储-前端基于antdv
java·数据库·腾讯云
Nan_Shu_6141 小时前
学习SpringBoot
java·spring boot·后端·学习·spring
JAVA学习通1 小时前
SpringBoot Layui ThymeLeaf 一点点学习心得
java·spring
考虑考虑1 小时前
JDK25中的StructuredTaskScope
java·后端·java ee