pytorch中的nn.MSELoss()均方误差损失函数

一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。

均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。

具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量表示两个张量之间的均方误差 。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方误差损失。

使用nn.MSELoss()函数时,通常需要传入两个参数:目标值和预测值。预测值可以是模型的输出值,目标值可以是训练集中的真实标签。

二、nn.MSELoss()的损失函数公式为:

MSE Loss = 1/N * sum( (target - output)² / 2)。

其中,N为batch size,即样本点的数量;target为真实值,即目标值;output为模型预测值,即模型的输出值。

这个公式表示对模型预测值与真实值之间的差距进行平方,并求取平均值,因此该损失函数可以衡量模型预测值与真实值之间的距离。通过最小化这个损失函数,可以优化模型的参数,使模型的预测值更接近真实值。

在PyTorch中,nn.MSELoss()函数用于计算均方误差损失,通常用于回归问题的模型训练和评估。需要注意的是,该函数会对输入的所有元素进行逐个计算因此输入张量的形状需要匹配

总之,nn.MSELoss()是一个常用的均方误差损失函数的实现,可以用于模型训练和评估。

相关推荐
hairenjing11231 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子5 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing18 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
小码的头发丝、25 分钟前
Django中ListView 和 DetailView类的区别
数据库·python·django
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
Chef_Chen1 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
千澜空2 小时前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务