pytorch中的nn.MSELoss()均方误差损失函数

一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。

均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。

具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量表示两个张量之间的均方误差 。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方误差损失。

使用nn.MSELoss()函数时,通常需要传入两个参数:目标值和预测值。预测值可以是模型的输出值,目标值可以是训练集中的真实标签。

二、nn.MSELoss()的损失函数公式为:

MSE Loss = 1/N * sum( (target - output)² / 2)。

其中,N为batch size,即样本点的数量;target为真实值,即目标值;output为模型预测值,即模型的输出值。

这个公式表示对模型预测值与真实值之间的差距进行平方,并求取平均值,因此该损失函数可以衡量模型预测值与真实值之间的距离。通过最小化这个损失函数,可以优化模型的参数,使模型的预测值更接近真实值。

在PyTorch中,nn.MSELoss()函数用于计算均方误差损失,通常用于回归问题的模型训练和评估。需要注意的是,该函数会对输入的所有元素进行逐个计算因此输入张量的形状需要匹配

总之,nn.MSELoss()是一个常用的均方误差损失函数的实现,可以用于模型训练和评估。

相关推荐
蛋仔聊测试5 分钟前
Playwright 中特定的 Fixtures
python
蹦蹦跳跳真可爱58912 分钟前
Python----大模型(使用api接口调用大模型)
人工智能·python·microsoft·语言模型
小爷毛毛_卓寿杰13 分钟前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
Mr.Winter`14 分钟前
障碍感知 | 基于3D激光雷达的三维膨胀栅格地图构建(附ROS C++仿真)
人工智能·机器人·自动驾驶·ros·具身智能·环境感知
好开心啊没烦恼23 分钟前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
清幽竹客28 分钟前
Day 3:Python模块化、异常处理与包管理实战案例
python
磊叔的技术博客29 分钟前
LLM 系列(六):模型推理篇
人工智能·面试·llm
爱分享的飘哥29 分钟前
【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”
人工智能·音视频
fzyz12336 分钟前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
BIYing_Aurora38 分钟前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉