【智能算法】象群算法(EHO)原理及实现

目录


1.背景

2016年,Wang等人受到自然界中象群社会行为启发,提出了象群算法(Elephant Herding Optimization, EHO)。

2.算法原理

2.1算法思想

EHO将大自然中象群的氏族结构和游牧过程中公象离群的行为,抽象为氏族更新操作和分离操作,实现高效的寻优过程。

2.2算法过程

氏族更新操作

在一个氏族中,大象在一起生活,并受到一头雌性大象的领导:
x new , ci , j = x ci , j + α × ( x best , ci − x ci , j ) × r (1) x_{\text{new},\text{ci},j}=x_{\text{ci},j}+\alpha\times\left(x_{\text{best},\text{ci}}-x_{\text{ci},j}\right)\times r\tag{1} xnew,ci,j=xci,j+α×(xbest,ci−xci,j)×r(1)

其中,xbest,ci为氏族ci的雌性领袖,是氏族ci中适应度最好的个体。

论文中提出氏族中心概念,对雌性领袖位置进行更新:
x n e w , c i , j = β × x c e n t e r , c i (2) x_{\mathrm{new,ci,}j}=\beta\times x_{\mathrm{center,ci}}\tag{2} xnew,ci,j=β×xcenter,ci(2)

氏族中心表述为:
x c e n t e r , c i , d = 1 n c i × ∑ j = 1 n c i x c i , j , d (3) x_{\mathrm{center},\mathrm{ci},d}=\frac{1}{n_{\mathrm{ci}}}\times\sum_{j=1}^{n_{\mathrm{ci}}}x_{\mathrm{ci},j,d}\tag{3} xcenter,ci,d=nci1×j=1∑ncixci,j,d(3)

分离操作:

自然界中雄性大象的生活习性是成长到一定年龄就会离开象群独自生活:
x w o r s t , c i = x m i n + ( x m a x − x m i n + 1 ) × R (4) x_{\mathrm{worst,ci}}=x_{\mathrm{min}}+\bigl(x_{\mathrm{max}}-x_{\mathrm{min}}+1\bigr)\times R\tag{4} xworst,ci=xmin+(xmax−xmin+1)×R(4)

伪代码

3.结果展示

4.参考文献

1\] Wang G G, Deb S, Gao X Z, et al. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour\[J\]. International Journal of Bio-Inspired Computation, 2016, 8(6): 394-409.

相关推荐
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之12 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓13 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf13 小时前
图论----拓扑排序
算法·图论
我要昵称干什么13 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ13 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl13 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦13 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku13 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯