自动驾驶_交通标志识别:各目标检测算法评测

自动驾驶|交通标志识别:各目标检测算法评测

论文题目:Evaluation of Deep Neural Networks for traffic sign detection systems

开源代码:https://github.com/aarcosg/traffic-sign-detection

附赠自动驾驶学习资料和量产经验:链接

1. 概述

本篇文章的工作用一句话就可以总结,就是比较各目标检测算法在交通标志检测和识别任务中的综合性能。一共比较了8种模型,用5项指标进行评价,到这里,我只想说,这位老哥你是真的闲。

2. 评价内容及方法

1)评价模型

一共评价了8种模型,如下表所示

所有打勾的就是参与评价的模型,也就是对比各个检测框架或同一检测框架下不同特征提取网络之间的差异。

2)评价指标

评价指标一共有5种,分别是mAP(精度)、FPS(速度)、memory(内存占用)、FLOPs(浮点运算次数)、parameters(参数量)

3)评价流程

使用各模型在coco数据集上训练的参数,fine-tune方法迁移到German Traffic Sign Detection Benchmark dataset(GTSDB)训练集上调整参数,之后在GTSDB的测试集上运行,并对结果进行评价。

3. 评价结果

各模型5项指标的结果如下表所示

为了对比更直观,作者给出了下面这张图

最后描述一下结论:

Faster R-CNN与Inception Resnet V2的组合达到最高的mAP(95.77%),R-FCN与Resnet 101组合达到精度(95.15%)和速度(85.45ms每幅图像)的最佳平衡,YOLO V2取得了有竞争力的精度(78.83%)并且是第二快的(21.48ms每幅图像),SSD MobileNet则是最快的模型(15.14ms每幅图像),也是对内存要求最低的(94.70MB)。SSD MobileNet最适合在移动端和嵌入式设备部署,但对小的交通标识检测结果不好。

4. 总结与感想

我不感想,我仍然觉得他很闲。

相关推荐
小康小小涵8 小时前
改进型深度Q-网格DQN和蒙特卡洛树搜索MCTS以及模型预测控制MPC强化学习的机器人室内导航仿真
人工智能·机器人·自动驾驶
田里的水稻8 小时前
FA_拟合和插值(FI)-逼近样条03(准均匀B样条的计算)
人工智能·数学建模·机器人·自动驾驶
智驱力人工智能9 小时前
货车走快车道检测 高速公路安全治理的工程实践与价值闭环 高速公路货车占用小客车道抓拍系统 城市快速路货车违规占道AI识别
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算
退休钓鱼选手10 小时前
[CommonAPI + vsomeip]通信 客户端 5
c++·人工智能·自动驾驶
极客小云10 小时前
【YOLO26教育版目标检测项目详解 - 从零开始掌握YOLO核心原理】
人工智能·yolo·目标检测
Dingdangcat8612 小时前
【技术解析】TOOD-R101-FPN-MS-2x-COCO导弹目标检测模型实现与优化
人工智能·目标检测·计算机视觉
OLOLOadsd12313 小时前
牛群目标检测新突破:基于YOLOv3-SPP的精准识别与优化策略
人工智能·yolo·目标检测
Funny_AI_LAB13 小时前
RAD基准重新定义多视角异常检测,传统2D方法为何战胜前沿3D与VLM?
人工智能·目标检测·3d·ai
ZCXZ12385296a14 小时前
母线检测与识别——基于CenterNet改进模型的工业电力设备目标检测系统_r18_fpn_8xb8-amp-lsj-200e_coco
人工智能·目标检测·计算机视觉
张3蜂14 小时前
工具香-乌班图安装 Label Studio最稳方案
yolo·目标检测·开源