自动驾驶_交通标志识别:各目标检测算法评测

自动驾驶|交通标志识别:各目标检测算法评测

论文题目:Evaluation of Deep Neural Networks for traffic sign detection systems

开源代码:https://github.com/aarcosg/traffic-sign-detection

附赠自动驾驶学习资料和量产经验:链接

1. 概述

本篇文章的工作用一句话就可以总结,就是比较各目标检测算法在交通标志检测和识别任务中的综合性能。一共比较了8种模型,用5项指标进行评价,到这里,我只想说,这位老哥你是真的闲。

2. 评价内容及方法

1)评价模型

一共评价了8种模型,如下表所示

所有打勾的就是参与评价的模型,也就是对比各个检测框架或同一检测框架下不同特征提取网络之间的差异。

2)评价指标

评价指标一共有5种,分别是mAP(精度)、FPS(速度)、memory(内存占用)、FLOPs(浮点运算次数)、parameters(参数量)

3)评价流程

使用各模型在coco数据集上训练的参数,fine-tune方法迁移到German Traffic Sign Detection Benchmark dataset(GTSDB)训练集上调整参数,之后在GTSDB的测试集上运行,并对结果进行评价。

3. 评价结果

各模型5项指标的结果如下表所示

为了对比更直观,作者给出了下面这张图

最后描述一下结论:

Faster R-CNN与Inception Resnet V2的组合达到最高的mAP(95.77%),R-FCN与Resnet 101组合达到精度(95.15%)和速度(85.45ms每幅图像)的最佳平衡,YOLO V2取得了有竞争力的精度(78.83%)并且是第二快的(21.48ms每幅图像),SSD MobileNet则是最快的模型(15.14ms每幅图像),也是对内存要求最低的(94.70MB)。SSD MobileNet最适合在移动端和嵌入式设备部署,但对小的交通标识检测结果不好。

4. 总结与感想

我不感想,我仍然觉得他很闲。

相关推荐
Faker66363aaa7 小时前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
Piar1231sdafa12 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
给我一瓶哇哈哈呀12 小时前
[ROS2] CMU团队的Autonomous Exploration算法+MID-360部署到实车记录
c++·自动驾驶
田里的水稻19 小时前
FA_规划和控制(PC)-A*(规划01)
人工智能·算法·数学建模·机器人·自动驾驶
向哆哆19 小时前
恶性疟原虫显微镜图像的目标检测数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
向哆哆20 小时前
道路表面多类型缺陷的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
田里的水稻21 小时前
FA_规划和控制(PC)-D*规划
人工智能·算法·数学建模·机器人·自动驾驶
田里的水稻1 天前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
jay神1 天前
基于 YOLOv11 的人脸表情识别系统
人工智能·深度学习·yolo·目标检测·计算机视觉
乾元1 天前
对抗性攻击:一张贴纸如何让自动驾驶视觉系统失效?
运维·网络·人工智能·安全·机器学习·自动驾驶