DETR【Transformer+目标检测】

End-to-End Object Detection with Transformers
2024 NVIDIA GTC,发布了地表最强的GPU B200,同时,黄仁勋对谈《Attention is All You Need》论文其中的7位作者,座谈的目的无非就是诉说,Transformer才是今天人工智能成功的核心关键,它上面承载着大模型的运转,下面承载着对训练和推理芯片的要求。

1、Introduction

DETR 的开创性主要体现不需要像Faster R-CNN、YOLO等目标检测算法那样,生成大量的预测框,然后再通过NMS非极大值抑制方法处理冗余的预测框。

而是,利用 Transformer 全局建模的能力,把目标检测看成集合预测(给定一张图片,返回一个集合,其中包括每个框的坐标,以及框中物体的类别)的问题。

2、DETR architecture

首先,图像经过CNN提取图像特征,再经过 Transformer Encoder 学习全局特征,让 Decoder 预测出检测结果,最后,将置信度大的目标作为检测结果。

3、Encoder self-attention

作者将编码器注意力可视化,利用对每个物体选一个点计算自注意力,可以发现,经过Transformer Encoder后每个物体都可以很好的区分开来。

4、Decoder

Encoder是学习全局特征,让物体之间尽可能分得开。但是对于轮廓点这些细节就需要Decoder去做,Decoder可以很好的处理遮挡问题。

5、Comparison with Faster R-CNN

6、Conclusion

  • 文章作者指出DETR的优势在于:
    • 对于大物体的检测,性能优于Faster R-CNN;
    • 模型结构简单,Pytorch推理代码不到50行;
    • 方便拓展到其他任务上,文章也指出DETR在全景分割上表现出不错的效果.
  • 文章作者也指出DETR存在的缺点:
    • 模型训练时间较长,大概需要500epoch;
    • 相对于Faster R-CNN,对于小物体的目标检测性能较差。

查阅文章

【计算机视觉 | 目标检测】Object query的理解
从人脑到Transformer:轻松理解注意力机制中的QKV
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记

相关推荐
UQI-LIUWJ1 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL1 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
JoinApper1 小时前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
北京地铁1号线1 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch2 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan74 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
机器学习之心5 小时前
分解+优化+预测!CEEMDAN-Kmeans-VMD-DOA-Transformer-LSTM多元时序预测
lstm·transformer·kmeans·多元时序预测·双分解
会写代码的饭桶5 小时前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
cyyt7 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max5006007 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频