DETR【Transformer+目标检测】

End-to-End Object Detection with Transformers
2024 NVIDIA GTC,发布了地表最强的GPU B200,同时,黄仁勋对谈《Attention is All You Need》论文其中的7位作者,座谈的目的无非就是诉说,Transformer才是今天人工智能成功的核心关键,它上面承载着大模型的运转,下面承载着对训练和推理芯片的要求。

1、Introduction

DETR 的开创性主要体现不需要像Faster R-CNN、YOLO等目标检测算法那样,生成大量的预测框,然后再通过NMS非极大值抑制方法处理冗余的预测框。

而是,利用 Transformer 全局建模的能力,把目标检测看成集合预测(给定一张图片,返回一个集合,其中包括每个框的坐标,以及框中物体的类别)的问题。

2、DETR architecture

首先,图像经过CNN提取图像特征,再经过 Transformer Encoder 学习全局特征,让 Decoder 预测出检测结果,最后,将置信度大的目标作为检测结果。

3、Encoder self-attention

作者将编码器注意力可视化,利用对每个物体选一个点计算自注意力,可以发现,经过Transformer Encoder后每个物体都可以很好的区分开来。

4、Decoder

Encoder是学习全局特征,让物体之间尽可能分得开。但是对于轮廓点这些细节就需要Decoder去做,Decoder可以很好的处理遮挡问题。

5、Comparison with Faster R-CNN

6、Conclusion

  • 文章作者指出DETR的优势在于:
    • 对于大物体的检测,性能优于Faster R-CNN;
    • 模型结构简单,Pytorch推理代码不到50行;
    • 方便拓展到其他任务上,文章也指出DETR在全景分割上表现出不错的效果.
  • 文章作者也指出DETR存在的缺点:
    • 模型训练时间较长,大概需要500epoch;
    • 相对于Faster R-CNN,对于小物体的目标检测性能较差。

查阅文章

【计算机视觉 | 目标检测】Object query的理解
从人脑到Transformer:轻松理解注意力机制中的QKV
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记
DETR哔哩哔哩讲解笔记

相关推荐
极度畅想20 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
深蓝学院1 天前
自动驾驶目标检测十年进化之路:从像素、点云到多模态大模型的时代
人工智能·目标检测·自动驾驶
CoovallyAIHub1 天前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
OpenBayes1 天前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub1 天前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉
feifeigo1231 天前
基于帧间差分法的运动目标检测 MATLAB 实现
目标检测·matlab·目标跟踪
五月底_1 天前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo
hopsky1 天前
经典Transformer的PyTorch实现
pytorch·深度学习·transformer
roman_日积跬步-终至千里1 天前
【计算机视觉(19)】语义理解-CNN应用_目标检测_语义分割
目标检测·计算机视觉·cnn