DNFOMP:杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器

DNFOMP:杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器

附赠自动驾驶学习资料和量产经验:链接

摘要

本文介绍了DNFOMP:杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器。动态变化环境中的运动规划是自动驾驶中最复杂的挑战之一。除了驾驶舒适性和速度限制以外,安全性也是一项关键要求。尽管经典的基于采样、基于lattice和基于优化的规划方法可以生成平滑而短的路径,但是它们通常不考虑环境的动态特性。一些技术确实考虑了这一点,但是它们依赖于在行驶过程中更新环境而不是明确考虑动态特性,这不适用于自动驾驶。为了解决这一问题,本文提出了一种基于神经场最优运动规划器(NFOMP)的新型方法,该方法在归一化曲率和尖端数量方面优于最先进的方法。本文方法将先前已知的运动障碍物嵌入到神经场碰撞模型中,以考虑环境的动态特性。本文还通过将拉格朗日乘子加入轨迹损失函数中,以引入轨迹的时间曲线和非线性速度约束。我们使用BeamNG.tech驾驶仿真器,将本文方法应用于求解城市环境中的最优运动规划问题。一辆自动驾驶汽车在三个城市场景中行驶生成的轨迹,同时与障碍物汽车共享道路。本文评估表明,乘客可以体验的瞬时最大加速度为-7.5m/s^2,89.6%的驾驶时间用于加速度低于3.5m/s^2的正常驾驶。

主要贡献

本文的主要贡献如下:

1)本文提出了碰撞的神经场表示,其考虑了运动障碍物;

2)本文提出了一种具有速度和转向约束的自动驾驶汽车的轨迹优化方法;

3)本文提出了一种基于优化的算法,用于非圆形非完整机器人的最优运动规划。

论文图片和表格

总结

本文提出了一种新型算法用于求解杂乱环境中自动驾驶汽车的最优运动规划问题。由于该算法将环境动态特性嵌入到神经场碰撞模型中,使得在空间-时间中规划轨迹和避开运动障碍物成为可能。为了验证本文所提出方法,一辆自动驾驶汽车在BeamNG.tech驾驶仿真器中沿着规划的轨迹行驶,获得了轨迹曲率和尖端数量等常规指标。在这些项中,本文所提出方法与NFOMP基线处于相同的水平,并且额外考虑了运动障碍物。根据动态性质的研究,乘客可以体验的瞬时最大加速度为 -7.5m/s^2,89.6%的行驶时间用于加速度低于3.5m/s^2的正常驾驶。

在未来,我们计划在各种装置上进行现实世界实验,例如室外、室内移动机器人、无人机,并且检查该方法对于更复杂系统的适用性,例如模块化两轮漫游车。

相关推荐
liupenglove2 小时前
ElasticSearch向量检索技术方案介绍
大数据·人工智能·深度学习·elasticsearch·搜索引擎·自动驾驶
燚泽19 小时前
31-自定义地图:分层地图
c++·python·测试工具·自动驾驶
qq 61782767521 小时前
PIC16F648A-I/SS 8位微控制器 -MCU 微芯 PIC16F648AT-I/SS 8位微控制器 -MCU 在售公司有完全可替代PIC16F648
人工智能·单片机·嵌入式硬件·车载系统·自动驾驶
准橙考典2 天前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
云卓科技3 天前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI3 天前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
高登先生3 天前
京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会
大数据·人工智能·科技·机器人·自动驾驶
开MINI的工科男3 天前
【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程
人工智能·笔记·自动驾驶·预测与决策·时空联合规划
地平线开发者5 天前
【征程 6 工具链性能分析与优化-1】编译器预估 perf 解读与性能分析
算法·自动驾驶
春贵丶csdn5 天前
又一次安装autoware.universe的过程
自动驾驶