[开源] 基于GRU的时间序列预测模型python代码

基于GRU的时间序列预测模型python代码分享给大家,记得点赞哦

python 复制代码
#!/usr/bin/env python
# coding: utf-8

import time
time_start = time.time() 


import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, GRU
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import r2_score 
from keras import optimizers
from pylab import *
import tensorflow as tf


mpl.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False


# 调用GPU加速
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)


def creat_dataset(dataset, look_back=10):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i: (i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)


dataframe = pd.read_csv('天气.csv',header=0, parse_dates=[0],index_col=0, usecols=[0, 1])#header=0第0行为表头,index_col=0第一列为索引,usecols=[0, 1]选取第一列和第二列
dataset = dataframe.values
dataframe.head(10)

plt.figure(figsize=(10, 4),dpi=150)
dataframe.plot()
plt.ylabel('AQI')
plt.xlabel('time/day')
font = {'serif': 'Times New Roman','size': 20}
plt.rc('font', **font)
plt.show()


scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))


train_size = int(len(dataset)*0.8)
test_size = len(dataset)-train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]



look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)


model = Sequential()
model.add(GRU(input_dim=1, units=50, return_sequences=True))
model.add(GRU(input_dim=50, units=100, return_sequences=True))
model.add(GRU(input_dim=100, units=200, return_sequences=True))
model.add(GRU(300, return_sequences=False))
model.add(Dropout(0.2))

model.add(Dense(100))
model.add(Dense(units=1))

model.add(Activation('relu'))
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam')
model.summary()
len(model.layers)


history = model.fit(trainX, trainY, batch_size=64, epochs=100, validation_split=None, verbose=2)
print('compilatiom time:', time.time()-start)

#get_ipython().run_line_magic('matplotlib', 'notebook')
fig1 = plt.figure(figsize=(10, 3),dpi=150)
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()


trainPredict = model.predict(trainX)
testPredict = model.predict(testX)


trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)

testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
print('Train Sccore %.4f RMSE' %(testScore))
testScore = mean_absolute_error(testY, testPredict[:, 0])
print('Train Sccore %.4f MAE' %(testScore))
testScore = r2_score(testY, testPredict[:, 0])
print('Train Sccore %.4f R2' %(testScore))


trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[:] = np.nan
trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredict


testPredictPlot = np.empty_like(dataset)
testPredictPlot[:] = np.nan
testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredict


dataset = scaler.inverse_transform(dataset)


#get_ipython().run_line_magic('matplotlib', 'notebook')
plt.figure(figsize=(10, 4),dpi=150)
plt.title(' Prediction',size=15)
plt.plot(dataset, color='red', linewidth=1.5, linestyle="-",label='Actual')
plt.plot(testPredictPlot,  color='blue',linewidth=2,linestyle="--", label='Prediction')
plt.legend()
plt.ylabel('AQI',size=15)
plt.xlabel('time/day',size=15)
plt.show()


time_end = time.time()  
time_sum = time_end - time_start  
print(time_sum)

更多时间序列预测代码获取:时间序列预测算法全集合--深度学习

相关推荐
明明如月学长28 分钟前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能
猫头虎29 分钟前
如何使用Docker部署OpenClaw汉化中文版?
运维·人工智能·docker·容器·langchain·开源·aigc
njsgcs30 分钟前
输入图片,点击按钮,返回下一个state的图片,llm给标签,循环,能训练出按钮对应的标签吗
人工智能
啊森要自信34 分钟前
CANN runtime 深度解析:异构计算架构下运行时组件的性能保障与功能增强实现逻辑
深度学习·架构·transformer·cann
Aric_Jones35 分钟前
如何在网站中接入 AI 智能助手
人工智能
m0_5711866039 分钟前
第三十四周周报
人工智能
AI资源库39 分钟前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni40 分钟前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
kyle~41 分钟前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm