[开源] 基于GRU的时间序列预测模型python代码

基于GRU的时间序列预测模型python代码分享给大家,记得点赞哦

python 复制代码
#!/usr/bin/env python
# coding: utf-8

import time
time_start = time.time() 


import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, GRU
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import r2_score 
from keras import optimizers
from pylab import *
import tensorflow as tf


mpl.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False


# 调用GPU加速
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)


def creat_dataset(dataset, look_back=10):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i: (i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)


dataframe = pd.read_csv('天气.csv',header=0, parse_dates=[0],index_col=0, usecols=[0, 1])#header=0第0行为表头,index_col=0第一列为索引,usecols=[0, 1]选取第一列和第二列
dataset = dataframe.values
dataframe.head(10)

plt.figure(figsize=(10, 4),dpi=150)
dataframe.plot()
plt.ylabel('AQI')
plt.xlabel('time/day')
font = {'serif': 'Times New Roman','size': 20}
plt.rc('font', **font)
plt.show()


scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))


train_size = int(len(dataset)*0.8)
test_size = len(dataset)-train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]



look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)


model = Sequential()
model.add(GRU(input_dim=1, units=50, return_sequences=True))
model.add(GRU(input_dim=50, units=100, return_sequences=True))
model.add(GRU(input_dim=100, units=200, return_sequences=True))
model.add(GRU(300, return_sequences=False))
model.add(Dropout(0.2))

model.add(Dense(100))
model.add(Dense(units=1))

model.add(Activation('relu'))
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam')
model.summary()
len(model.layers)


history = model.fit(trainX, trainY, batch_size=64, epochs=100, validation_split=None, verbose=2)
print('compilatiom time:', time.time()-start)

#get_ipython().run_line_magic('matplotlib', 'notebook')
fig1 = plt.figure(figsize=(10, 3),dpi=150)
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()


trainPredict = model.predict(trainX)
testPredict = model.predict(testX)


trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform(trainY)
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform(testY)

testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
print('Train Sccore %.4f RMSE' %(testScore))
testScore = mean_absolute_error(testY, testPredict[:, 0])
print('Train Sccore %.4f MAE' %(testScore))
testScore = r2_score(testY, testPredict[:, 0])
print('Train Sccore %.4f R2' %(testScore))


trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[:] = np.nan
trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredict


testPredictPlot = np.empty_like(dataset)
testPredictPlot[:] = np.nan
testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredict


dataset = scaler.inverse_transform(dataset)


#get_ipython().run_line_magic('matplotlib', 'notebook')
plt.figure(figsize=(10, 4),dpi=150)
plt.title(' Prediction',size=15)
plt.plot(dataset, color='red', linewidth=1.5, linestyle="-",label='Actual')
plt.plot(testPredictPlot,  color='blue',linewidth=2,linestyle="--", label='Prediction')
plt.legend()
plt.ylabel('AQI',size=15)
plt.xlabel('time/day',size=15)
plt.show()


time_end = time.time()  
time_sum = time_end - time_start  
print(time_sum)

更多时间序列预测代码获取:时间序列预测算法全集合--深度学习

相关推荐
飞哥数智坊2 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI5 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元6 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元6 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心6 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术7 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing7 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_7 小时前
NCCL的用户缓冲区注册
人工智能
sans_7 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算8 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc