yolov8训练自己的数据集

前文中完成了简单的配置,现在学习一下怎么使用模型进行训练。

训练:yolo train data=... model=yolov8n.pt epochs=... lr0=0.03

试一下怎么用:

执行过程长这样:

执行后在对应文件夹看结果,啥都有。包括训练/验证时的图像,各种评估方法等,并且会保存最优权重。


使用coco训练集可以完成模型的训练,那么要训练自己的数据集,要怎么做呢?--那当然是模仿!

准备数据集时,要模仿coco数据集的存储格式并且进行配置。

coco8

  • images
    • train
    • val
  • labels
    • train
    • val

images里面存放图片,labels里面存放信息---打开一个.txt文件看看长啥样

里面存放了五个参数,第一个是类别,第二、三个参数是归一化后的中心坐标,第四、五个参数是归一化后的长&宽

  • 什么是归一化?为什么要归一化?
    • 就是读入图片时,画出的boundingbox的各参数与原图片的宽和高之比
    • 归一化是为了数据便于计算,统一存储格式,以及避免因原图片尺寸不同而导致计算量等有所影响。

接下来简单看一下.yaml中数据的存储格式

path:存储绝对路径

train/val/test:都是存储在path下的路径。就是path指定了一个大文件夹,而这三个是大文件夹下的子文件夹。


知道大概流程就开始打标了- -,我打算在多分辨率下进行标注,是个不小的工程量。用labelimg标注时一直按w绘制方框就完了。

(下图中只是部分框选,是未完成打标的图像,因为也可以看到漏了好几个的)

打标打了160张图,五六千个框框,人麻了- -打标打了两天


完成标注后,下一步是对yolo网络的调用。前面已经提到文件夹的排列方式。

训练集和验证集相应存放图片/标签

完成文件存放后,配置.yaml文件


下一步,就是切换路径,调用模型训练自己的数据集了。

激活环境---切换路径(主要是懒得打绝对路径才这样的)---调用模型,设置参数

这里手快打漏了cd 顾着截图去了- 在这里,设置了迭代次数为10,图像大小为640* 640,其他参数比如初始学习率等也可以设置,详见其他博客。

yolo train model=yolov8n.pt data=mydata.yaml epochs=10 imgsz=640

首先会显示模型的架构以及参数量,

跑起来长这样,然后等训练完成就好了。后续工作就是进行参数的调整或者针对具体任务改变网络架构(修改.yaml文件,改model,再设置pretrained=xxx.pt)等。模型训练完成后,在相应的runs文件夹查看混淆矩阵以及各曲线,且会自动存储最优权重。


小结:其实yolo网络上手是很简单的,零基础的都能轻松使用,也不需要什么编程基础...会打标,会放文件,会配置环境就好了。之后的项目中也要经常用到yolo的,这次算是开了个头吧!

相关推荐
natide26 分钟前
表示/嵌入差异-7-间隔/边际对齐(Alignment Margin)
人工智能·深度学习·算法·机器学习·自然语言处理·知识图谱
毅炼31 分钟前
hot100打卡——day08
java·数据结构·算法·leetcode·深度优先
l1t42 分钟前
DeepSeek总结的算法 X 与舞蹈链文章
前端·javascript·算法
gihigo199844 分钟前
水声信号处理中DEMON谱分析的原理、实现与改进
算法·信号处理
歌_顿1 小时前
微调方法学习总结(万字长文!)
算法
@小码农1 小时前
202512 电子学会 Scratch图形化编程等级考试四级真题(附答案)
java·开发语言·算法
mit6.8241 小时前
右端点对齐|镜像复用
算法
Xの哲學3 小时前
从硬中断到 softirq:Linux 软中断机制的全景解剖
linux·服务器·网络·算法·边缘计算
生信碱移3 小时前
单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!
算法·机器学习·数据挖掘·数据分析·聚类
Brduino脑机接口技术答疑3 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg