AI视觉相关的预训练模型、公开数据集

一、视觉相关的预训练模型 有很多,以下是一些常见的预训练模型及其对应的公开数据集:

  1. ResNet:ResNet 是一种卷积神经网络(CNN)模型,由 Microsoft Research 开发。ResNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  2. VGG:VGG 是一种卷积神经网络(CNN)模型,由牛津大学开发。VGG 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  3. Inception:Inception 是一种卷积神经网络(CNN)模型,由 Google 开发。Inception 在ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  4. DenseNet:DenseNet 是一种卷积神经网络(CNN)模型,由Facebook AI Research开发。DenseNet 在 ImageNet数据集 上进行了预训练,可以用于图像分类 任务。
  5. MobileNet:MobileNet 是一种轻量级的卷积神经网络(CNN)模型,由 Google 开发。MobileNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  6. YOLO:YOLO 是一种目标检测模型,由 Joseph Redmon 等人开发。YOLO 在COCO 数据集 上进行了预训练,可以用于目标检测 任务。
  7. Mask R-CNN:Mask R-CNN 是一种目标检测模型,由Matterport, Inc.开发。Mask R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测语义分割 任务。
  8. Faster R-CNN:Faster R-CNN 是一种目标检测模型,由NVIDIA开发。Faster R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  9. SSD:SSD 是一种目标检测模型,由 Google Brain 团队开发。SSD 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  10. RetinaNet:RetinaNet 是一种目标检测模型,由 Facebook AI Research 开发。RetinaNet 在COCO数据集 上进行了预训练,可以用于目标检测 任务。

二、视觉领域开源的数据集 有很多,以下是一些常见的数据集及其包含的类别和样本数量:

  1. ImageNet:ImageNet是一个大规模的图像分类 数据集,它从2007年开始建立,包含超过1400多万张图片和2万多的分类。ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)比赛常用的一个子集是ILSVRC2012,它包含1000个分类,每个分类约有1000张图片,总计约120万张训练图片。ImageNet主要为图像分类、检测、定位等任务提供数据支持。
  2. MS COCO (Microsoft Common Objects in Context):COCO是由微软提供的大规模的目标检测语义分割 数据集,包含80个类别的图像,每个类别大约有1000张。
  3. PASCAL VOC:PASCAL VOC 是一个目标检测语义分割 数据集,包含 20 个类别的图像,每个类别大约有 2000 张图片。
  4. CIFAR-10:CIFAR-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 6000 张图片。
  5. CIFAR-100:CIFAR-100 是一个小型的图像分类 数据集,包含 100 个类别的图像,每个类别大约有 6000 张图片。
  6. STL-10:STL-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 5000 强烈建议。
  7. Open Images Dataset:由谷歌提供的图像数据集,包含了大约900万个带有图像级别标注和大约250万个带有目标边界框标注的图像。这个数据集被用于各种计算机视觉任务,包括目标检测图像分类和场景理解等。
  8. MNIST Handwritten Digits:一个经典的手写数字识别数据集,包含70,000张大小为28x28的灰度图像。
  9. Oxford Flowers 102:包含102个不同花卉类别的数据集,适用于图像分类任务。
  10. Stanford Dogs Dataset:专注于狗的品种识别,包含超过2万张不同品种狗的图像。
相关推荐
无水先生1 分钟前
数据集预处理:规范化和标准化
人工智能·深度学习
August_._16 分钟前
【MySQL】触发器、日志、锁机制 深度解析
java·大数据·数据库·人工智能·后端·mysql·青少年编程
磊磊落落17 分钟前
使用 FastMCP 编写一个 MySQL MCP Server
人工智能
零号机40 分钟前
使用TRAE 30分钟极速开发一款划词中英互译浏览器插件
前端·人工智能
FunTester42 分钟前
基于 Cursor 的智能测试用例生成系统 - 项目介绍与实施指南
人工智能·ai·大模型·测试用例·实践指南·curor·智能测试用例
SEO_juper1 小时前
LLMs.txt 创建指南:为大型语言模型优化您的网站
人工智能·ai·语言模型·自然语言处理·数字营销
淮雵的Blog1 小时前
langGraph通俗易懂的解释、langGraph和使用API直接调用LLM的区别
人工智能
Mintopia1 小时前
🚀 共绩算力:3分钟拥有自己的文生图AI服务-容器化部署 StableDiffusion1.5-WebUI 应用
前端·人工智能·aigc
HPC_C1 小时前
SGLang: Efficient Execution of Structured Language Model Programs
人工智能·语言模型·自然语言处理
王哈哈^_^1 小时前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计