AI视觉相关的预训练模型、公开数据集

一、视觉相关的预训练模型 有很多,以下是一些常见的预训练模型及其对应的公开数据集:

  1. ResNet:ResNet 是一种卷积神经网络(CNN)模型,由 Microsoft Research 开发。ResNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  2. VGG:VGG 是一种卷积神经网络(CNN)模型,由牛津大学开发。VGG 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  3. Inception:Inception 是一种卷积神经网络(CNN)模型,由 Google 开发。Inception 在ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  4. DenseNet:DenseNet 是一种卷积神经网络(CNN)模型,由Facebook AI Research开发。DenseNet 在 ImageNet数据集 上进行了预训练,可以用于图像分类 任务。
  5. MobileNet:MobileNet 是一种轻量级的卷积神经网络(CNN)模型,由 Google 开发。MobileNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  6. YOLO:YOLO 是一种目标检测模型,由 Joseph Redmon 等人开发。YOLO 在COCO 数据集 上进行了预训练,可以用于目标检测 任务。
  7. Mask R-CNN:Mask R-CNN 是一种目标检测模型,由Matterport, Inc.开发。Mask R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测语义分割 任务。
  8. Faster R-CNN:Faster R-CNN 是一种目标检测模型,由NVIDIA开发。Faster R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  9. SSD:SSD 是一种目标检测模型,由 Google Brain 团队开发。SSD 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  10. RetinaNet:RetinaNet 是一种目标检测模型,由 Facebook AI Research 开发。RetinaNet 在COCO数据集 上进行了预训练,可以用于目标检测 任务。

二、视觉领域开源的数据集 有很多,以下是一些常见的数据集及其包含的类别和样本数量:

  1. ImageNet:ImageNet是一个大规模的图像分类 数据集,它从2007年开始建立,包含超过1400多万张图片和2万多的分类。ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)比赛常用的一个子集是ILSVRC2012,它包含1000个分类,每个分类约有1000张图片,总计约120万张训练图片。ImageNet主要为图像分类、检测、定位等任务提供数据支持。
  2. MS COCO (Microsoft Common Objects in Context):COCO是由微软提供的大规模的目标检测语义分割 数据集,包含80个类别的图像,每个类别大约有1000张。
  3. PASCAL VOC:PASCAL VOC 是一个目标检测语义分割 数据集,包含 20 个类别的图像,每个类别大约有 2000 张图片。
  4. CIFAR-10:CIFAR-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 6000 张图片。
  5. CIFAR-100:CIFAR-100 是一个小型的图像分类 数据集,包含 100 个类别的图像,每个类别大约有 6000 张图片。
  6. STL-10:STL-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 5000 强烈建议。
  7. Open Images Dataset:由谷歌提供的图像数据集,包含了大约900万个带有图像级别标注和大约250万个带有目标边界框标注的图像。这个数据集被用于各种计算机视觉任务,包括目标检测图像分类和场景理解等。
  8. MNIST Handwritten Digits:一个经典的手写数字识别数据集,包含70,000张大小为28x28的灰度图像。
  9. Oxford Flowers 102:包含102个不同花卉类别的数据集,适用于图像分类任务。
  10. Stanford Dogs Dataset:专注于狗的品种识别,包含超过2万张不同品种狗的图像。
相关推荐
夜幕龙几秒前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖18 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂30 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者31 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye44 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技2 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1362 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练