AI视觉相关的预训练模型、公开数据集

一、视觉相关的预训练模型 有很多,以下是一些常见的预训练模型及其对应的公开数据集:

  1. ResNet:ResNet 是一种卷积神经网络(CNN)模型,由 Microsoft Research 开发。ResNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  2. VGG:VGG 是一种卷积神经网络(CNN)模型,由牛津大学开发。VGG 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  3. Inception:Inception 是一种卷积神经网络(CNN)模型,由 Google 开发。Inception 在ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  4. DenseNet:DenseNet 是一种卷积神经网络(CNN)模型,由Facebook AI Research开发。DenseNet 在 ImageNet数据集 上进行了预训练,可以用于图像分类 任务。
  5. MobileNet:MobileNet 是一种轻量级的卷积神经网络(CNN)模型,由 Google 开发。MobileNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  6. YOLO:YOLO 是一种目标检测模型,由 Joseph Redmon 等人开发。YOLO 在COCO 数据集 上进行了预训练,可以用于目标检测 任务。
  7. Mask R-CNN:Mask R-CNN 是一种目标检测模型,由Matterport, Inc.开发。Mask R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测语义分割 任务。
  8. Faster R-CNN:Faster R-CNN 是一种目标检测模型,由NVIDIA开发。Faster R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  9. SSD:SSD 是一种目标检测模型,由 Google Brain 团队开发。SSD 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  10. RetinaNet:RetinaNet 是一种目标检测模型,由 Facebook AI Research 开发。RetinaNet 在COCO数据集 上进行了预训练,可以用于目标检测 任务。

二、视觉领域开源的数据集 有很多,以下是一些常见的数据集及其包含的类别和样本数量:

  1. ImageNet:ImageNet是一个大规模的图像分类 数据集,它从2007年开始建立,包含超过1400多万张图片和2万多的分类。ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)比赛常用的一个子集是ILSVRC2012,它包含1000个分类,每个分类约有1000张图片,总计约120万张训练图片。ImageNet主要为图像分类、检测、定位等任务提供数据支持。
  2. MS COCO (Microsoft Common Objects in Context):COCO是由微软提供的大规模的目标检测语义分割 数据集,包含80个类别的图像,每个类别大约有1000张。
  3. PASCAL VOC:PASCAL VOC 是一个目标检测语义分割 数据集,包含 20 个类别的图像,每个类别大约有 2000 张图片。
  4. CIFAR-10:CIFAR-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 6000 张图片。
  5. CIFAR-100:CIFAR-100 是一个小型的图像分类 数据集,包含 100 个类别的图像,每个类别大约有 6000 张图片。
  6. STL-10:STL-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 5000 强烈建议。
  7. Open Images Dataset:由谷歌提供的图像数据集,包含了大约900万个带有图像级别标注和大约250万个带有目标边界框标注的图像。这个数据集被用于各种计算机视觉任务,包括目标检测图像分类和场景理解等。
  8. MNIST Handwritten Digits:一个经典的手写数字识别数据集,包含70,000张大小为28x28的灰度图像。
  9. Oxford Flowers 102:包含102个不同花卉类别的数据集,适用于图像分类任务。
  10. Stanford Dogs Dataset:专注于狗的品种识别,包含超过2万张不同品种狗的图像。
相关推荐
我是Feri14 分钟前
机器学习之线性回归的特征相关性:避免“双胞胎特征“干扰模型
人工智能·机器学习
SaN-V16 分钟前
针对 OpenMMLab 视频理解(分类)的 MMAction2 的环境配置
人工智能·openmmlab·mmcv·视频理解·mmaction2
拉姆哥的小屋17 分钟前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
深瞳智检33 分钟前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
神奇的代码在哪里1 小时前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
蒋星熠1 小时前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
qq_340474021 小时前
0.6 卷积神经网络
人工智能·神经网络·cnn·卷积神经网络
MYX_3091 小时前
第三章 神经网络
人工智能·深度学习·神经网络
大千AI助手1 小时前
学生化残差(Studentized Residual):概念、计算与应用
人工智能·回归分析·正态分布·t分布·残差·学生化残差·异方差性
羊羊小栈1 小时前
基于「YOLO目标检测 + 多模态AI分析」的光伏板缺陷检测分析系统(vue+flask+模型训练+AI算法)
vue.js·人工智能·yolo·目标检测·flask·毕业设计·大作业