AI视觉相关的预训练模型、公开数据集

一、视觉相关的预训练模型 有很多,以下是一些常见的预训练模型及其对应的公开数据集:

  1. ResNet:ResNet 是一种卷积神经网络(CNN)模型,由 Microsoft Research 开发。ResNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  2. VGG:VGG 是一种卷积神经网络(CNN)模型,由牛津大学开发。VGG 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  3. Inception:Inception 是一种卷积神经网络(CNN)模型,由 Google 开发。Inception 在ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  4. DenseNet:DenseNet 是一种卷积神经网络(CNN)模型,由Facebook AI Research开发。DenseNet 在 ImageNet数据集 上进行了预训练,可以用于图像分类 任务。
  5. MobileNet:MobileNet 是一种轻量级的卷积神经网络(CNN)模型,由 Google 开发。MobileNet 在 ImageNet 数据集 上进行了预训练,可以用于图像分类 任务。
  6. YOLO:YOLO 是一种目标检测模型,由 Joseph Redmon 等人开发。YOLO 在COCO 数据集 上进行了预训练,可以用于目标检测 任务。
  7. Mask R-CNN:Mask R-CNN 是一种目标检测模型,由Matterport, Inc.开发。Mask R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测语义分割 任务。
  8. Faster R-CNN:Faster R-CNN 是一种目标检测模型,由NVIDIA开发。Faster R-CNN 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  9. SSD:SSD 是一种目标检测模型,由 Google Brain 团队开发。SSD 在COCO数据集 上进行了预训练,可以用于目标检测 任务。
  10. RetinaNet:RetinaNet 是一种目标检测模型,由 Facebook AI Research 开发。RetinaNet 在COCO数据集 上进行了预训练,可以用于目标检测 任务。

二、视觉领域开源的数据集 有很多,以下是一些常见的数据集及其包含的类别和样本数量:

  1. ImageNet:ImageNet是一个大规模的图像分类 数据集,它从2007年开始建立,包含超过1400多万张图片和2万多的分类。ILSVRC(ImageNet Large-Scale Visual Recognition Challenge)比赛常用的一个子集是ILSVRC2012,它包含1000个分类,每个分类约有1000张图片,总计约120万张训练图片。ImageNet主要为图像分类、检测、定位等任务提供数据支持。
  2. MS COCO (Microsoft Common Objects in Context):COCO是由微软提供的大规模的目标检测语义分割 数据集,包含80个类别的图像,每个类别大约有1000张。
  3. PASCAL VOC:PASCAL VOC 是一个目标检测语义分割 数据集,包含 20 个类别的图像,每个类别大约有 2000 张图片。
  4. CIFAR-10:CIFAR-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 6000 张图片。
  5. CIFAR-100:CIFAR-100 是一个小型的图像分类 数据集,包含 100 个类别的图像,每个类别大约有 6000 张图片。
  6. STL-10:STL-10 是一个小型的图像分类 数据集,包含 10 个类别的图像,每个类别大约有 5000 强烈建议。
  7. Open Images Dataset:由谷歌提供的图像数据集,包含了大约900万个带有图像级别标注和大约250万个带有目标边界框标注的图像。这个数据集被用于各种计算机视觉任务,包括目标检测图像分类和场景理解等。
  8. MNIST Handwritten Digits:一个经典的手写数字识别数据集,包含70,000张大小为28x28的灰度图像。
  9. Oxford Flowers 102:包含102个不同花卉类别的数据集,适用于图像分类任务。
  10. Stanford Dogs Dataset:专注于狗的品种识别,包含超过2万张不同品种狗的图像。
相关推荐
IT猿手4 分钟前
2025高维多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
开发语言·人工智能·算法·机器学习·matlab·无人机·cocos2d
橙子小哥的代码世界14 分钟前
【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例
人工智能·python·机器学习·kmeans·数据科学·聚类算法·肘部法
k layc18 分钟前
【论文解读】《Training Large Language Models to Reason in a Continuous Latent Space》
人工智能·python·机器学习·语言模型·自然语言处理·大模型推理
代码猪猪傻瓜coding27 分钟前
【模块】 ASFF 模块
人工智能·深度学习
阿正的梦工坊32 分钟前
Sliding Window Attention(滑动窗口注意力)解析: Pytorch实现并结合全局注意力(Global Attention )
人工智能·pytorch·python
rgb2gray1 小时前
GeoHD - 一种用于智慧城市热点探测的Python工具箱
人工智能·python·智慧城市
火车叼位1 小时前
5个Why、SWOT, 5W2H等方法论总结,让你的提示词更加精炼
人工智能
阿正的梦工坊1 小时前
PyTorch下三角矩阵生成函数torch.tril的深度解析
人工智能·pytorch·矩阵
说私域2 小时前
电商运营中私域流量的转化与变现:以开源AI智能名片2+1链动模式S2B2C商城小程序为例
人工智能·小程序·开源·流量运营
老A的AI实验室2 小时前
通俗理解Test time Scaling Law、RL Scaling Law和预训练Scaling Law
人工智能·深度学习·算法·chatgpt·llm·agi·rl