代码随想录阅读笔记-二叉树【修剪二叉搜索树】

题目

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

思路

相信看到这道题目大家都感觉是一道简单题(事实上leetcode上也标明是简单)。

但真的需要大家在很多方面考虑清楚

递归法

直接想法就是:递归处理,然后遇到 root->val < low || root->val > high 的时候直接return NULL,一波修改,赶紧利落。

不难写出如下代码:

cpp 复制代码
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr || root->val < low || root->val > high) return nullptr;
        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);
        return root;
    }
};

然而[1, 3]区间在二叉搜索树的中可不是单纯的节点3和左孩子节点0就决定的,还要考虑节点0的右子树

我们在重新关注一下第二个示例,如图:

所以以上的代码是不可行的!

从图中可以看出需要重构二叉树,想想是不是本题就有点复杂了。

其实不用重构那么复杂。

在上图中我们发现节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如图:

理解了最关键部分了我们再递归三部曲:

1、确定递归函数的参数以及返回值

这里我们为什么需要返回值呢?

因为是要遍历整棵树,做修改,其实不需要返回值也可以,我们也可以完成修剪(其实就是从二叉树中移除节点)的操作。但是有返回值更方便,可以通过递归函数的返回值来移除节点。

cpp 复制代码
TreeNode* trimBST(TreeNode* root, int low, int high)

2、确定终止条件

修剪的操作并不是在终止条件上进行的,所以就是遇到空节点返回就可以了。

cpp 复制代码
if (root == nullptr ) return nullptr;

3、确定单层递归的逻辑

如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。

cpp 复制代码
if (root->val < low) {
    TreeNode* right = trimBST(root->right, low, high); // 寻找符合区间[low, high]的节点
    return right;
}

如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点。

代码如下:

cpp 复制代码
if (root->val > high) {
    TreeNode* left = trimBST(root->left, low, high); // 寻找符合区间[low, high]的节点
    return left;
}

接下来要将下一层处理完左子树的结果赋给root->left,处理完右子树的结果赋给root->right。

最后返回root节点,代码如下:

cpp 复制代码
root->left = trimBST(root->left, low, high); // root->left接入符合条件的左孩子
root->right = trimBST(root->right, low, high); // root->right接入符合条件的右孩子
return root;

此时大家是不是还没发现这多余的节点究竟是如何从二叉树中移除的呢?

在回顾一下上面的代码,针对下图中二叉树的情况:

如下代码相当于把节点0的右孩子(节点2)返回给上一层,

然后如下代码相当于用节点3的左孩子 把下一层返回的 节点0的右孩子(节点2) 接住。

cpp 复制代码
root->left = trimBST(root->left, low, high);

此时节点3的左孩子就变成了节点2,将节点0从二叉树中移除了。

最后整体代码如下:

cpp 复制代码
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr ) return nullptr;
        if (root->val < low) {
            TreeNode* right = trimBST(root->right, low, high); // 寻找符合区间[low, high]的节点
            return right;
        }
        if (root->val > high) {
            TreeNode* left = trimBST(root->left, low, high); // 寻找符合区间[low, high]的节点
            return left;
        }
        root->left = trimBST(root->left, low, high); // root->left接入符合条件的左孩子
        root->right = trimBST(root->right, low, high); // root->right接入符合条件的右孩子
        return root;
    }
};

精简之后代码如下:

cpp 复制代码
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (root == nullptr) return nullptr;
        if (root->val < low) return trimBST(root->right, low, high);
        if (root->val > high) return trimBST(root->left, low, high);
        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);
        return root;
    }
};
迭代法

因为二叉搜索树的有序性,不需要使用栈模拟递归的过程。

在剪枝的时候,可以分为三步:

  • 将root移动到[L, R] 范围内,注意是左闭右闭区间
  • 剪枝左子树
  • 剪枝右子树

代码如下:

cpp 复制代码
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int L, int R) {
        if (!root) return nullptr;

        // 处理头结点,让root移动到[L, R] 范围内,注意是左闭右闭
        while (root != nullptr && (root->val < L || root->val > R)) {
            if (root->val < L) root = root->right; // 小于L往右走
            else root = root->left; // 大于R往左走
        }
        TreeNode *cur = root;
        // 此时root已经在[L, R] 范围内,处理左孩子元素小于L的情况
        while (cur != nullptr) {
            while (cur->left && cur->left->val < L) {
                cur->left = cur->left->right;
            }
            cur = cur->left;
        }
        cur = root;

        // 此时root已经在[L, R] 范围内,处理右孩子大于R的情况
        while (cur != nullptr) {
            while (cur->right && cur->right->val > R) {
                cur->right = cur->right->left;
            }
            cur = cur->right;
        }
        return root;
    }
};
相关推荐
幸运超级加倍~20 分钟前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan2019031328 分钟前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法30 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR30 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
linsa_pursuer31 分钟前
快乐数算法
算法·leetcode·职场和发展
小芒果_0132 分钟前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
qq_4340859034 分钟前
Day 52 || 739. 每日温度 、 496.下一个更大元素 I 、503.下一个更大元素II
算法
Beau_Will34 分钟前
ZISUOJ 2024算法基础公选课练习一(2)
算法
XuanRanDev37 分钟前
【每日一题】LeetCode - 三数之和
数据结构·算法·leetcode·1024程序员节
gkdpjj38 分钟前
C++优选算法十 哈希表
c++·算法·散列表