【opencv】示例-dis_opticalflow.cpp 视频中光流的计算与可视化

该代码主要实现的功能是视频中光流的计算与可视化。首先使用OpenCV的VideoCapture对象打开视频文件,并每帧提取视频帧。接着,对连续两帧图像使用Dense Optical Flow ,这里使用了DIS (Dense Inverse Search)算法来计算它们之间的光流向量。计算得到的光流向量分解为x和y分量,并转换为极坐标表示的大小和角度。 这些信息通过归一化并映射到HSV色彩空间来对光流进行可视化,最终以颜色编码的方式显示出来。该过程包括了读取视频、处理每一帧并显示结果,直到遍历完所有帧或用户中断为止。

cpp 复制代码
#include "opencv2/core/utility.hpp" // 包含OpenCV核心功能支持的头文件
#include "opencv2/highgui.hpp"      // 包含OpenCV GUI 和图像/视频读写的头文件
#include "opencv2/imgproc.hpp"      // 包含OpenCV图像处理的头文件
#include "opencv2/videoio.hpp"      // 包含OpenCV视频读写的头文件
#include "opencv2/video.hpp"        // 包含OpenCV视频分析的头文件


using namespace std; // 使用标准命名空间
using namespace cv;  // 使用OpenCV命名空间


int main(int argc, char **argv)
{
    // 解析命令行参数
    CommandLineParser parser(argc, argv, "{ @video  | vtest.avi  | use video as input }"); 
    // 获取视频文件名,如果没找到,则保留输入的字符串
    string filename = samples::findFileOrKeep(parser.get<string>("@video")); 


    VideoCapture cap; // 创建视频捕获对象
    cap.open(filename); // 打开视频文件


    // 如果无法打开视频文件,则打印错误信息并退出
    if(!cap.isOpened())
    {
        printf("ERROR: Cannot open file %s\n", filename.c_str());
        parser.printMessage();
        return -1;
    }


    // 定义图像矩阵
    Mat prevgray, gray, rgb, frame;
    // 光流图像和分量
    Mat flow, flow_uv[2];
    // 光流的大小与角度
    Mat mag, ang;
    // HSV色彩空间分量
    Mat hsv_split[3], hsv;
    // 接收键盘输入
    char ret;


    // 创建稠密光流计算对象(中等预设)
    Ptr<DenseOpticalFlow> algorithm = DISOpticalFlow::create(DISOpticalFlow::PRESET_MEDIUM);


    // 无限循环,直到视频读取完成或用户终止
    while(true)
    {
        cap >> frame; // 从视频中读取一帧
        // 如果读取到的帧为空,则跳出循环
        if (frame.empty())
            break;


        // 将图像由BGR色彩空间转换为灰度空间
        cvtColor(frame, gray, COLOR_BGR2GRAY);


        // 如果prevgray不为空,则计算当前帧和前一帧之间的光流
        if (!prevgray.empty())
        {
            algorithm->calc(prevgray, gray, flow); // 计算光流
            split(flow, flow_uv); // 分离光流的两个分量
            multiply(flow_uv[1], -1, flow_uv[1]); // 翻转y分量
            cartToPolar(flow_uv[0], flow_uv[1], mag, ang, true); // 将笛卡尔坐标转换为极坐标
            // 归一化光流的大小  
            normalize(mag, mag, 0, 1, NORM_MINMAX);
            // 是否设定HSV色彩空间的H、S、V分量
            hsv_split[0] = ang; // 角度字段
            hsv_split[1] = mag; // 光流大小字段
            hsv_split[2] = Mat::ones(ang.size(), ang.type()); // 光流可视化的V分量设为全1矩阵
            merge(hsv_split, 3, hsv); // 融合HSV的分量得到完整的HSV图像
            cvtColor(hsv, rgb, COLOR_HSV2BGR); // 将HSV色彩空间转化为BGR色彩空间
            imshow("flow", rgb); // 显示光流图像
            imshow("orig", frame); // 显示原始图像
        }


        // 捕获键盘输入,如果用户按下任何键,终止循环
        if ((ret = (char)waitKey(20)) > 0)
            break;
        std::swap(prevgray, gray); // 更新前一帧的图像
    }


    // 正常结束程序,返回0
    return 0;
}
cpp 复制代码
std::swap(prevgray, gray);
shell 复制代码
algorithm->calc(prevgray, gray, flow);
css 复制代码
cartToPolar(flow_uv[0], flow_uv[1], mag, ang, true);

The End

相关推荐
机智的叉烧25 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀28 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
量子-Alex1 小时前
【多模态聚类】用于无标记视频自监督学习的多模态聚类网络
学习·音视频·聚类
泰迪智能科技012 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu3 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理