【opencv】示例-dis_opticalflow.cpp 视频中光流的计算与可视化

该代码主要实现的功能是视频中光流的计算与可视化。首先使用OpenCV的VideoCapture对象打开视频文件,并每帧提取视频帧。接着,对连续两帧图像使用Dense Optical Flow ,这里使用了DIS (Dense Inverse Search)算法来计算它们之间的光流向量。计算得到的光流向量分解为x和y分量,并转换为极坐标表示的大小和角度。 这些信息通过归一化并映射到HSV色彩空间来对光流进行可视化,最终以颜色编码的方式显示出来。该过程包括了读取视频、处理每一帧并显示结果,直到遍历完所有帧或用户中断为止。

cpp 复制代码
#include "opencv2/core/utility.hpp" // 包含OpenCV核心功能支持的头文件
#include "opencv2/highgui.hpp"      // 包含OpenCV GUI 和图像/视频读写的头文件
#include "opencv2/imgproc.hpp"      // 包含OpenCV图像处理的头文件
#include "opencv2/videoio.hpp"      // 包含OpenCV视频读写的头文件
#include "opencv2/video.hpp"        // 包含OpenCV视频分析的头文件


using namespace std; // 使用标准命名空间
using namespace cv;  // 使用OpenCV命名空间


int main(int argc, char **argv)
{
    // 解析命令行参数
    CommandLineParser parser(argc, argv, "{ @video  | vtest.avi  | use video as input }"); 
    // 获取视频文件名,如果没找到,则保留输入的字符串
    string filename = samples::findFileOrKeep(parser.get<string>("@video")); 


    VideoCapture cap; // 创建视频捕获对象
    cap.open(filename); // 打开视频文件


    // 如果无法打开视频文件,则打印错误信息并退出
    if(!cap.isOpened())
    {
        printf("ERROR: Cannot open file %s\n", filename.c_str());
        parser.printMessage();
        return -1;
    }


    // 定义图像矩阵
    Mat prevgray, gray, rgb, frame;
    // 光流图像和分量
    Mat flow, flow_uv[2];
    // 光流的大小与角度
    Mat mag, ang;
    // HSV色彩空间分量
    Mat hsv_split[3], hsv;
    // 接收键盘输入
    char ret;


    // 创建稠密光流计算对象(中等预设)
    Ptr<DenseOpticalFlow> algorithm = DISOpticalFlow::create(DISOpticalFlow::PRESET_MEDIUM);


    // 无限循环,直到视频读取完成或用户终止
    while(true)
    {
        cap >> frame; // 从视频中读取一帧
        // 如果读取到的帧为空,则跳出循环
        if (frame.empty())
            break;


        // 将图像由BGR色彩空间转换为灰度空间
        cvtColor(frame, gray, COLOR_BGR2GRAY);


        // 如果prevgray不为空,则计算当前帧和前一帧之间的光流
        if (!prevgray.empty())
        {
            algorithm->calc(prevgray, gray, flow); // 计算光流
            split(flow, flow_uv); // 分离光流的两个分量
            multiply(flow_uv[1], -1, flow_uv[1]); // 翻转y分量
            cartToPolar(flow_uv[0], flow_uv[1], mag, ang, true); // 将笛卡尔坐标转换为极坐标
            // 归一化光流的大小  
            normalize(mag, mag, 0, 1, NORM_MINMAX);
            // 是否设定HSV色彩空间的H、S、V分量
            hsv_split[0] = ang; // 角度字段
            hsv_split[1] = mag; // 光流大小字段
            hsv_split[2] = Mat::ones(ang.size(), ang.type()); // 光流可视化的V分量设为全1矩阵
            merge(hsv_split, 3, hsv); // 融合HSV的分量得到完整的HSV图像
            cvtColor(hsv, rgb, COLOR_HSV2BGR); // 将HSV色彩空间转化为BGR色彩空间
            imshow("flow", rgb); // 显示光流图像
            imshow("orig", frame); // 显示原始图像
        }


        // 捕获键盘输入,如果用户按下任何键,终止循环
        if ((ret = (char)waitKey(20)) > 0)
            break;
        std::swap(prevgray, gray); // 更新前一帧的图像
    }


    // 正常结束程序,返回0
    return 0;
}
cpp 复制代码
std::swap(prevgray, gray);
shell 复制代码
algorithm->calc(prevgray, gray, flow);
css 复制代码
cartToPolar(flow_uv[0], flow_uv[1], mag, ang, true);

The End

相关推荐
AI极客菌31 分钟前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭33 分钟前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^39 分钟前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
YRr YRr2 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘