神经网络分类和回归任务实战

学习方法:torch 边用边学,边查边学 真正用查的过程才是学习的过程

直接上案例,先来跑,遇到什么解决什么

数据集Minist 数据集

做简单的任务 Minist 分类任务

总体代码(可以跑通)

from pathlib import Path
import requests
import pickle
import gzip
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from torch import optim
import numpy as np
bs=64
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"

PATH.mkdir(parents=True, exist_ok=True)

URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
                ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")
from matplotlib import pyplot
import numpy as np
print(x_train.shape)

# pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
#获取训练数据和测试数据
x_train, y_train, x_valid, y_valid = map(
    torch.tensor, (x_train, y_train, x_valid, y_valid)
)
#设置模型结构
class Mnist_NN(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden1 = nn.Linear(784, 128)
        self.hidden2 = nn.Linear(128, 256)
        self.out = nn.Linear(256, 10)

    def forward(self, x):
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = self.out(x)
        return x
net = Mnist_NN()
# print(net)
# for name, parameter in net.named_parameters():
#     print(name, parameter,parameter.size())
#设置数据集和数据集加载器
train_ds = TensorDataset(x_train, y_train)
train_dl = DataLoader(train_ds, batch_size=64, shuffle=True)
valid_ds = TensorDataset(x_valid, y_valid)
valid_dl = DataLoader(valid_ds, batch_size=64 * 2)
def get_data(train_ds, valid_ds, bs):
    return (
        DataLoader(train_ds, batch_size=bs, shuffle=True),
        DataLoader(valid_ds, batch_size=bs * 2),
    )

loss_func = F.cross_entropy
def loss_batch(model, loss_func, xb, yb, opt=None):
    loss = loss_func(model(xb), yb)

    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()

    return loss.item(), len(xb)
#训练参数
def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):
        model.train()
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)

        model.eval()
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))
def get_model():
    model = Mnist_NN()
    return model, optim.SGD(model.parameters(), lr=0.001)
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)
model, opt = get_model()
fit(20, model, loss_func, opt, train_dl, valid_dl)
corret=0
total=0
for xb,yb in valid_dl:
    outputs=model(xb)
    _,predicted=torch.max(outputs.data,1)
    total+=yb.size(0)
    corret+=(predicted==yb).sum().item()
print('准确率是:%d %%'%(100*corret/total))

1.首先我们从最终实现的fit 函数开始看,

在fit h函数之前有一个get_model 函数 得到model和优化器

复制代码
model, opt = get_model()

得到模型的优化器以后

需要把训练轮数 模型 损失函数 训练数据 测试数据传入fit 训练函数

复制代码
fit(20, model, loss_func, opt, train_dl, valid_dl)

fit 函数

def fit(steps, model, loss_func, opt, train_dl, valid_dl):
    for step in range(steps):
        model.train()
        for xb, yb in train_dl:
            loss_batch(model, loss_func, xb, yb, opt)

        model.eval()
        with torch.no_grad():
            losses, nums = zip(
                *[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl]
            )
        val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
        print('当前step:'+str(step), '验证集损失:'+str(val_loss))

xb是从dataloader 中取64个训练数据图片 也就是64*784维度,784代表28*28的手写数字图片的展平成一维向量

yb是64个图片对应的数字值

loss_batch(model, loss_func, xb, yb, opt)

我们看一下loss_batch 函数

loss 反向传播------更新优化器------优化器梯度归0

loss 是一个带有梯度的tensor .item()返回的是loss 的值 len(xb )是为了求精度的时候算

输入是模型损失函数xb ,yb 和优化器

复制代码
loss_func = F.cross_entropy 损失函数是交叉熵损失函数

将xb 经过model 得到输出后 和xb 求损失函数 model 是定义的一个简单的模型有两个隐藏层一个输出层 784------128------256------10

再回到fit 函数的验证部分model.evl()

先来一个

复制代码
with torch.no_grad()

不去计算梯度

复制代码
zip(*的意思是解压缩 分别得到losses 和nums)

loss 和num 鲜橙 求每64个batch 的总loss 再将datalosder的所有batch 相加除以总数得到训练损失

相关推荐
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
落魄君子4 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
落魄君子4 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
四口鲸鱼爱吃盐6 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类
是Dream呀6 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
call me by ur name9 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
Python机器学习AI9 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
机器学习之心14 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
机器学习之心16 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru