大模型RAG(二)向量化(embedding)

语义向量模型是什么?

语义向量模型(Embedding Model)被广泛应用于搜索、推荐、数据挖掘等重要领域,将自然形式的数据样本(如语言、代码、图片、音视频)转化为向量(即连续的数字序列),并用向量间的"距离"衡量数据样本之间的"相关性" 。

常见的Embedding模型

  1. BCEmbedding
    BCEmbedding (Bilingual and Crosslingual Embedding for RAG) 是由网易有道开发的双语和跨语种语义表征算法模型库,其中包含EmbeddingModel和RerankerModel两类基础模型。
  2. BGEEmbedding
    BGEEmbedding是一个通用向量模型由智源研究院开发,基于retroma 对模型进行预训练,再用对比学习在大规模成对数据上训练模型。
  3. M3E
    M3E(Moka Massive Mixed Embedding)使用场景主要是中文,少量英文的情况,建议使用 m3e 系列的模型。
  4. 针对场景微调embedding模型
    在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答效果,因此,在许多场景下,我们都需要微调embedding模型来提高我们的召回效果。

如何选取合适的Embedding模型

创建一个小型的内存向量数据库DocArrayInMemorySearch并在其中插入一些文本,这些文本包括:中文句子,英文句子,数字符号等,这里我们为了在后面检验大模型给出的答案是否是由于"幻觉"而产生的。所以会往向量数据库中插入一些违背常识的文本。

python 复制代码
from langchain.embeddings import HuggingFaceBgeEmbeddings
 
bge_embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-large-zh-v1.5")

vectordb = DocArrayInMemorySearch.from_texts(
    ["青蛙是食草动物",
     "人是由恐龙进化而来的。",
     "熊猫喜欢吃天鹅肉。",
     "1+1=5",
     "2+2=8",
     "3+3=9",
    "Gemini Pro is a Large Language Model was made by GoogleDeepMind",
     "A Language model is trained by predicting the next token"
    ],
    embedding=bge_embeddings 
)
 
# #创建检索器
bge_retriever = vectordb.as_retriever(search_kwargs={"k": 1})

这里我们创建了一个内存向量数据库vectordb,并在里面创建了3句中文,3句数字符号,2句英文的文本。然后我们又创建了一个检索器bge_retriever,它可以根据问题从向量数据库中检索出与问题最相关的文档,这里我们设置了bge_retriever的参数search_kwargs={"k": 1},这表示beg_retriever每次只检索1条最相关的文档给用户。

实验过程中不断更换embedding模型,对比不同模型的检索效果,选取最合适的模型。

相关推荐
X.AI6664 分钟前
YouTube评论情感分析项目84%正确率:基于BERT的实战复现与原理解析
人工智能·深度学习·bert
艾莉丝努力练剑10 分钟前
【C++:继承】面向对象编程精要:C++继承机制深度解析与最佳实践
开发语言·c++·人工智能·继承·c++进阶
小宁爱Python25 分钟前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
Hard_Liquor26 分钟前
Datawhale秋训营-“大运河杯”数据开发应用创新大赛
人工智能·深度学习·算法
运维行者_40 分钟前
AWS云服务故障复盘——从故障中汲取的 IT 运维经验
大数据·linux·运维·服务器·人工智能·云计算·aws
Saniffer_SH1 小时前
搭载高性能GPU的英伟达Nvidia DGX Spark桌面性能小怪兽国内首台开箱视频!
人工智能·深度学习·神经网络·ubuntu·机器学习·语言模型·边缘计算
数字化脑洞实验室1 小时前
AI决策vs人工决策:效率的底层逻辑与选择边界
人工智能
可触的未来,发芽的智生1 小时前
追根索源:换不同的词嵌入(词向量生成方式不同,但词与词关系接近),会出现什么结果?
javascript·人工智能·python·神经网络·自然语言处理
递归不收敛1 小时前
三、检索增强生成(RAG)技术体系
人工智能·笔记·自然语言处理