大模型RAG(二)向量化(embedding)

语义向量模型是什么?

语义向量模型(Embedding Model)被广泛应用于搜索、推荐、数据挖掘等重要领域,将自然形式的数据样本(如语言、代码、图片、音视频)转化为向量(即连续的数字序列),并用向量间的"距离"衡量数据样本之间的"相关性" 。

常见的Embedding模型

  1. BCEmbedding
    BCEmbedding (Bilingual and Crosslingual Embedding for RAG) 是由网易有道开发的双语和跨语种语义表征算法模型库,其中包含EmbeddingModel和RerankerModel两类基础模型。
  2. BGEEmbedding
    BGEEmbedding是一个通用向量模型由智源研究院开发,基于retroma 对模型进行预训练,再用对比学习在大规模成对数据上训练模型。
  3. M3E
    M3E(Moka Massive Mixed Embedding)使用场景主要是中文,少量英文的情况,建议使用 m3e 系列的模型。
  4. 针对场景微调embedding模型
    在外挂知识库的过程中,embedding模型的召回效果直接影响到大模型的回答效果,因此,在许多场景下,我们都需要微调embedding模型来提高我们的召回效果。

如何选取合适的Embedding模型

创建一个小型的内存向量数据库DocArrayInMemorySearch并在其中插入一些文本,这些文本包括:中文句子,英文句子,数字符号等,这里我们为了在后面检验大模型给出的答案是否是由于"幻觉"而产生的。所以会往向量数据库中插入一些违背常识的文本。

python 复制代码
from langchain.embeddings import HuggingFaceBgeEmbeddings
 
bge_embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-large-zh-v1.5")

vectordb = DocArrayInMemorySearch.from_texts(
    ["青蛙是食草动物",
     "人是由恐龙进化而来的。",
     "熊猫喜欢吃天鹅肉。",
     "1+1=5",
     "2+2=8",
     "3+3=9",
    "Gemini Pro is a Large Language Model was made by GoogleDeepMind",
     "A Language model is trained by predicting the next token"
    ],
    embedding=bge_embeddings 
)
 
# #创建检索器
bge_retriever = vectordb.as_retriever(search_kwargs={"k": 1})

这里我们创建了一个内存向量数据库vectordb,并在里面创建了3句中文,3句数字符号,2句英文的文本。然后我们又创建了一个检索器bge_retriever,它可以根据问题从向量数据库中检索出与问题最相关的文档,这里我们设置了bge_retriever的参数search_kwargs={"k": 1},这表示beg_retriever每次只检索1条最相关的文档给用户。

实验过程中不断更换embedding模型,对比不同模型的检索效果,选取最合适的模型。

相关推荐
kngines1 分钟前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey1 分钟前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币7 分钟前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争32 分钟前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道32 分钟前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别
算家计算37 分钟前
5 秒预览物理世界,2 行代码启动生成——ComfyUI-Cosmos-Predict2 本地部署教程,重塑机器人训练范式!
人工智能·开源
摆烂工程师37 分钟前
国内如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·ai编程·claude
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法