数据结构与算法 — 贪心算法

数据结构与算法

数据结构与算法是计算机科学中的两个核心概念,它们在软件开发和问题解决中起着至关重要的作用。

数据结构

数据结构是计算机中存储、组织和管理数据的方式,它能够帮助我们高效地访问和修改数据。不同的数据结构适用于不同类型的应用场景。

常见的数据结构包括:

  • 数组:一种线性数据结构,用于存储具有相同类型的元素集合,每个元素在内存中占据连续的位置。
  • 链表:由节点组成的线性数据结构,每个节点包含数据和指向下一个节点的指针。
  • 栈:一种后进先出(LIFO)的数据结构,常用于管理函数调用、表达式求值等。
  • 队列:一种先进先出(FIFO)的数据结构,适用于任务调度、缓冲处理等场景。
  • 树:一种分层数据结构,由节点组成,每个节点可以有零个或多个子节点。
  • 图:由顶点(节点)和边组成,可以表示多对多的关系,适用于网络分析、路径查找等。

算法

算法是解决特定问题的一系列步骤和规则。算法的性能通常通过时间复杂度和空间复杂度来衡量。算法的设计和选择对程序的效率有很大影响。

常见的算法类型包括:

  • 排序算法:如快速排序、归并排序、堆排序等,用于将数据集合按特定顺序排列。
  • 搜索算法:如二分搜索、深度优先搜索(DFS)、广度优先搜索(BFS)等,用于在数据结构中查找特定元素。
  • 图算法:如Dijkstra算法、A*搜索算法、Prim算法和Kruskal算法等,用于解决图中的最短路径、最小生成树等问题。
  • 动态规划:一种通过将问题分解为重叠的子问题来解决问题的方法,适用于具有最优子结构特性的问题。
  • 分治算法:将问题分解为若干个规模较小的子问题,递归解决子问题后合并结果,适用于某些特定类型的优化问题。
  • 贪心算法:基于贪心策略,这种策略在每一步选择中都采取当前状态下最优的局部解,希望通过一系列局部最优解最终构造出一个全局最优解。

贪心算法

贪心算法的原理是基于贪心策略,这种策略在每一步选择中都采取当前状态下最优的局部解,希望通过一系列局部最优解最终构造出一个全局最优解。贪心算法的核心思想可以概括为以下几点:

  • 选择标准:根据问题定义一个选择标准,这个标准用于评价哪个选择是当前最优的。这个标准通常与问题的最终目标直接相关,例如最小化总成本或最大化总价值。

  • 局部最优解:在每一步决策中,算法都会选择当前看起来最优的解决方案。这种选择是基于局部信息做出的,而不依赖于未来的信息。

  • 无回溯:一旦做出了选择,贪心算法就不会撤销或回溯。这意味着算法的决策是一次性的,一旦确定,就会沿着这个方向继续前进。

  • 迭代过程:贪心算法通常通过迭代过程逐步构建解决方案。在每一轮迭代中,算法都会根据选择标准选择最优的决策,直到达到问题的终止条件。

  • 问题构造:贪心算法适用于某些特定类型的问题,这些问题可以通过贪心选择性质和最优子结构性质来解决。选择性质意味着局部最优选择可以确保全局最优解;子结构性质意味着问题的最优解包含其子问题的最优解。

贪心算法的适用性

贪心算法并不适用于所有问题。一个问题是否适合使用贪心算法,需要满足以下两个重要性质:

  • 贪心选择性质:算法可以做出局部最优选择,并且这些局部最优选择能够导向全局最优解。这意味着选择过程中不需要考虑将来的后果,因为局部最优解总是能够导致全局最优解。

  • 最优子结构性质:一个问题的最优解包含其子问题的最优解。这意味着问题可以通过解决其子问题并组合这些子问题的解来解决。

贪心算法应用场景

  1. 最小生成树问题
    问题描述 :给定一个带权的无向连通图,如何选择边构造一棵包含所有顶点且总权重最小的生成树。
    解决方案

    1)Prim算法:从一个顶点开始,逐步增加新的边和顶点,每次都选择连接已选顶点和未选顶点之间权重最小的边。

    2)Kruskal算法:将所有边按权重从小到大排序,依次选择边,如果加入当前边不会形成环,则加入该边,直到所有顶点都被连接。

  2. 背包问题
    问题描述 :给定一组物品,每个物品有重量和价值,在限定的总重量内,选择一部分物品,使得总价值最大。
    解决方案:按照单位重量价值(价值/重量)从高到低排序,然后从最高单位重量价值的物品开始,尽可能选择物品,直到达到背包重量限制。

  3. 活动选择问题
    问题描述 :给定一系列活动,每个活动有开始时间和结束时间,选择最大的互不相交的活动集合。
    解决方案:将活动按结束时间从早到晚排序,然后选择第一个活动,之后每次都选择与已选活动不相交的最早结束的活动。

  4. 哈夫曼编码(Huffman Coding)
    问题描述 :如何为一组字符设计最优的二进制编码,使得编码的平均长度尽可能短。
    解决方案

    1)统计每个字符出现的频率。

    2)将每个字符看作一个叶子节点,并根据频率创建一个优先队列(最小堆)。

    3)每次从优先队列中取出两个频率最小的节点,创建一个新的内部节点作为它们的父节点,其

    频率为两个子节点频率之和。

    4)将新创建的节点加入优先队列。

    5)重复步骤3和4,直到优先队列中只剩下一个节点,这个节点就是哈夫曼树的根节点。

    6)从根节点到每个叶子节点的路径就构成了字符的哈夫曼编码。

  5. 找零问题
    问题描述 :假设你是一名收银员,需要给顾客找零n元,你手头有各种面额的货币。如何用最少的硬币数找给顾客。
    解决方案:首先,确定货币的面额顺序,例如1元、5元、10元、20元、50元、100元。然后,从最大面额开始,尽可能多地使用该面额的硬币,直到剩余找零金额小于该面额,然后转向下一个较小的面额,重复此过程,直到找零完成。

  6. 硬币问题(Coin Changing Problem)
    问题描述 :给定不同面额的硬币和目标金额,如何用最少的硬币达到目标金额。
    解决方案:使用贪心算法的变种,每次选择当前可用的最大面额硬币,直到达到目标金额。注意,这种方法不总是能得到最优解,对于某些特定的硬币面额和目标金额,可能需要采用其他算法(如动态规划)来找到最优解。

找零问题 c++示例

假设我们有面额为 1, 5, 10, 20, 50, 100 的货币,现在需要给顾客找零 n 元。我们希望用最少的硬币数找给顾客。贪心算法的策略是每次都选择面值最大的货币,直到找零总额达到 n。

cpp 复制代码
#include <iostream>
#include <vector>

// 定义货币面额的数组
std::vector<int> denominations = {1, 5, 10, 20, 50, 100};

// 贪心算法找零函数
int greedyChange(int amount, const std::vector<int>& denoms) {
    int count = 0; // 用于计数找零需要的硬币数量
    for (int i = denoms.size() - 1; i >= 0; --i) {
        // 尽可能多地使用当前最大面额的硬币
        int coins = amount / denoms[i];
        count += coins;
        amount -= coins * denoms[i];
        // 如果找零金额为0,则结束循环
        if (amount == 0) {
            break;
        }
    }
    return count;
}

int main() {
    int amountToChange;
    std::cout << "Enter the amount to change: ";
    std::cin >> amountToChange;

    // 调用贪心算法函数,获取找零所需的硬币数量
    int coinCount = greedyChange(amountToChange, denominations);

    std::cout << "The minimum number of coins to change " << amountToChange
              << " is: " << coinCount << std::endl;

    return 0;
}

在这个例子中,首先定义了一个货币面额的数组 denominations,然后实现了一个 greedyChange 函数,该函数接受需要找零的金额和货币面额数组作为参数。在函数中,从最大面额的货币开始,尽可能多地使用它,直到找零金额不足以再次使用当前面额的货币,然后转向下一个较小的面额。这个过程一直持续到找零金额为0。

在 main 函数中,我们获取用户输入的找零金额,然后调用 greedyChange 函数计算并输出所需的最小硬币数量。

这个代码示例展示了如何在C++中使用贪心算法来解决实际问题。需要注意的是,这个贪心算法只适用于找零问题中的特定情况,即货币面额的组合能够无限制地分割。对于不可分割的情况,如硬币问题,需要采用不同的贪心策略或者其他算法。

相关推荐
XiaoLeisj7 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Jasmine_llq26 分钟前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹37 分钟前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin1 小时前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿1 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6171 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v1 小时前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组