Pandas进行数据分析

dataframe添加列:df2.drop('新增加的列:',axis=1,inplace=True)

在Pandas中,DataFrame的列是Series对象,而Series对象具有一系列字符串处理方法。要对Series中的字符串进行操作,需要使用.str属性来访问这些字符串方法。删除列中的横线
df2['来源明细'].str.lstrip('-')

转格式:df2['日期'] = pd.to_datetime(df2['日期'])

前13行:df2.iloc[:13,:]

loc和iloc的使用:

第一列和第5列:df2.iloc[:,[0,4]],使用df2.loc[:,[0,4]]则报错

使用loc进行bool条件筛选:df2.loc[df2['图书类型']=='小说',:]

使用名称进行列筛选:df2.loc[:,['图书类型','来源']]

pd.merge()表横向合并:

必须的参数是左表和右表

索引列没有字段名,参数写left_index=True, right_index=True

类似数据库中的左连接右连接内连接和外连接,how='left/right/inner/outer'

指定匹配的字段: on=

pd.dropna()删除空行,会创建一个新的df

修改源数据df = df.dropna()

参数为空时,只要数据有空时就会删除一行。

指定列出现空值继续删除可以用:df.dropna(subset=['支付转化率'])

repeat.drop_duplicates()去重
subset 参数,删除这个字段重复的行,保留了各自不重复的第一行。如果要保留最后一行,再指定参数keep='last'

df.sort_values('字段名', ascending=False)
ascending默认True,升序。无论那种,会将nan值的放在最后边。

筛选前三df.sort_values('客单价', ascending=False).head(3)

inplace=False默认时False,尽量不要设置为True。

df.groupby()进行分组

分组完后,不会有输出。要有输出,需要加上sum(),mean()函数

例如df.groupby('地区').sum(),默认将地区作为索引,如果想要数字为索引,groupby 内传入参数 as_index = False

(sum函数中有参数和没参数输出都是一样的,本来就不应该有参数)

如果只想查看某个字段,可以使用df.groupby('地区')['客单价', '利润'].sum()

pd.cut()分组

bins对访客进行分区。labels表示标签类型。right默认为True,表示前开后闭,设置为False,前闭后开。

添加一行新的列,对访客量打上一个级别标签:
df['访客数标签级别'] = pd.cut(df['访客数'], bins=[0,100,1000,10000,100000], right=False, labels=['十','百','千','万'])

获取分组后最大最小值,并保持pd格式。感觉没区别,第一种还更加简单,第二种Tab不出来函数。
score.groupby('姓名', as_index=False)[总成绩'].max()
score.groupby('姓名')['总成绩'].apply(min).reset_index()
pd.merge()合并两张表可以将最大值和最小值放在同一个表里

地区中,排名第三利润的城市:

复制代码
orderSort = order.sort_values(['省份','近1月销售额'], ascending=False).head(20) # 根据地区和销售额进行排名
def get_third(x):
    if len(x) <= 2:
        return x.iloc[len(x)-1,:]
    else:
        return x.iloc[2,:]
orderSort.groupby('省份')[['城市','近1月销售额']].apply(get_third) # 理解为有多个表,取出表中的城市和销售额字段记为x,将x应用apply函数
相关推荐
抠头专注python环境配置25 分钟前
基于Python与深度学习的智能垃圾分类系统设计与实现
pytorch·python·深度学习·分类·垃圾分类·vgg·densenet
愈努力俞幸运42 分钟前
flask 入门 token, headers,cookie
后端·python·flask
梦想是成为算法高手1 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
用什么都重名1 小时前
Conda 虚拟环境安装配置路径详解
windows·python·conda
阿也在北京1 小时前
基于Neo4j和TuGraph的知识图谱与问答系统搭建——胡歌的导演演员人际圈
python·阿里云·知识图谱·neo4j
计算机徐师兄1 小时前
Python基于知识图谱的胆囊炎医疗问答系统(附源码,文档说明)
python·知识图谱·胆囊炎医疗问答系统·python胆囊炎医疗问答系统·知识图谱的胆囊炎医疗问答系统·python知识图谱·医疗问答系统
北冥码鲲1 小时前
【保姆级教程】从零入手:Python + Neo4j 构建你的第一个知识图谱
python·知识图谱·neo4j
B站计算机毕业设计超人1 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
喵手1 小时前
Python爬虫零基础入门【第三章:Requests 静态爬取入门·第5节】限速与礼貌爬取:并发、延迟、频率控制!
爬虫·python·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·requests静态爬取·限速与爬取