目录模板-深度学习pytorch实战

零、引言(温故而知新,可以为师矣)

1.复习上周

2.摆正心态

3.本机环境

4.学习目标

一、前期准备

1.设置GPU

2.导入数据

3.数据可视化

二、构建简单的CNN网络

[1. torch.nn.Conv2d()详解](#1. torch.nn.Conv2d()详解)

函数原型:

关键参数说明:

[2. torch.nn.Linear()详解](#2. torch.nn.Linear()详解)

函数原型:

关键参数说明:

[3. torch.nn.MaxPool2d()详解](#3. torch.nn.MaxPool2d()详解)

函数原型:

关键参数说明:

[4. 关于卷积层、池化层的计算:](#4. 关于卷积层、池化层的计算:)

[注意:在加载并打印模型的时候 ,可能会报错,输入这条命令就可以了](#注意:在加载并打印模型的时候 ,可能会报错,输入这条命令就可以了)

输出结果:

三、训练模型

1.设置超参数

2.编写训练函数

[1. optimizer.zero_grad()](#1. optimizer.zero_grad())

[2. loss.backward()](#2. loss.backward())

[3. optimizer.step()](#3. optimizer.step())

注意:

3.编写测试函数

4.正式训练

[1. model.train()](#1. model.train())

[2. model.eval()](#2. model.eval())

四、结果可视化

五、学员问题

六,总结

构建数据集中

构建cnn网络中

训练模型中

编写训练函数中

编写测试函数同理

来到了正式训练

最后可视化

相关推荐
想你依然心痛几秒前
鲲鹏+昇腾:开启 AI for Science 新范式——基于PINN的流体仿真加速实践
人工智能·鲲鹏·昇腾
蓝眸少年CY2 分钟前
SpringAI+Deepseek大模型应用实战
人工智能
程序员欣宸3 分钟前
LangChain4j实战之十二:结构化输出之三,json模式
java·人工智能·ai·json·langchain4j
极小狐4 分钟前
智谱上市!当 GLM-4.7 遇上 CodeRider :演示何为「1+1>2」的巅峰效能
人工智能·ai编程
sunfove12 分钟前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
q_302381955613 分钟前
Atlas200DK 部署 yolov11 调用海康威视摄像头实现实时目标检测
人工智能·yolo·目标检测
故乡de云14 分钟前
Vertex AI 企业账号体系,Google Cloud 才能完整支撑
大数据·人工智能
汽车仪器仪表相关领域18 分钟前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
brave and determined20 分钟前
工程设计类学习(DAY4):硬件可靠性测试全攻略:标准到实战
人工智能·嵌入式硬件·测试·硬件设计·可靠性测试·嵌入式设计·可靠性方法
Stuomasi_xiaoxin22 分钟前
ROS2介绍,及ubuntu22.04 安装ROS 2部署使用!
linux·人工智能·深度学习·ubuntu