目录模板-深度学习pytorch实战

零、引言(温故而知新,可以为师矣)

1.复习上周

2.摆正心态

3.本机环境

4.学习目标

一、前期准备

1.设置GPU

2.导入数据

3.数据可视化

二、构建简单的CNN网络

[1. torch.nn.Conv2d()详解](#1. torch.nn.Conv2d()详解)

函数原型:

关键参数说明:

[2. torch.nn.Linear()详解](#2. torch.nn.Linear()详解)

函数原型:

关键参数说明:

[3. torch.nn.MaxPool2d()详解](#3. torch.nn.MaxPool2d()详解)

函数原型:

关键参数说明:

[4. 关于卷积层、池化层的计算:](#4. 关于卷积层、池化层的计算:)

[注意:在加载并打印模型的时候 ,可能会报错,输入这条命令就可以了](#注意:在加载并打印模型的时候 ,可能会报错,输入这条命令就可以了)

输出结果:

三、训练模型

1.设置超参数

2.编写训练函数

[1. optimizer.zero_grad()](#1. optimizer.zero_grad())

[2. loss.backward()](#2. loss.backward())

[3. optimizer.step()](#3. optimizer.step())

注意:

3.编写测试函数

4.正式训练

[1. model.train()](#1. model.train())

[2. model.eval()](#2. model.eval())

四、结果可视化

五、学员问题

六,总结

构建数据集中

构建cnn网络中

训练模型中

编写训练函数中

编写测试函数同理

来到了正式训练

最后可视化

相关推荐
十六年开源服务商5 分钟前
WordPress集成GoogleAnalytics最佳实践指南
前端·人工智能·机器学习
市象6 分钟前
石头把科技摔掉了
人工智能
子午7 分钟前
【2026原创】水稻植物病害识别系统~Python+深度学习+人工智能+resnet50算法+TensorFlow+图像识别
人工智能·python·深度学习
AI即插即用13 分钟前
超分辨率重建(论文精读) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·计算机视觉·视觉检测·超分辨率重建
AI营销干货站14 分钟前
原圈科技AI市场分析白皮书:决胜2026,重塑市场预测与决策
人工智能
董厂长15 分钟前
Agent 意图库 和 知识图谱
人工智能·llm·agent·意图识别
海天一色y27 分钟前
基于CNN实现Mnist手写数字识别
人工智能·深度学习·计算机视觉
说私域33 分钟前
基于AI智能名片链动2+1模式预约服务商城小程序的数据管理与系统集成研究
大数据·人工智能·小程序
AC赳赳老秦38 分钟前
技术文档合著:DeepSeek辅助多人协作文档的风格统一与内容补全
android·大数据·人工智能·微服务·golang·自动化·deepseek
咚咚王者39 分钟前
人工智能之核心基础 机器学习 第十四章 半监督与自监督学习总结归纳
人工智能·学习·机器学习