Streamlit + langchain 实现RAG问答机器人

py 复制代码
import os

os.environ["OPENAI_API_KEY"] = ''
os.environ["OPENAI_API_BASE"] = ''

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model = 'text-embedding-ada-002'
)
llm = OpenAI(
    model_name = 'gpt-3.5-turbo'
)

st.set_page_config(page_title="Chat", page_icon="", layout="centered", initial_sidebar_state="auto", menu_items=None)
# openai.api_key = st.secrets.openai_key
st.title("Chat with AI")

# function for writing uploaded file in temp
def write_text_file(content, file_path):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        return True
    except Exception as e:
        print(f"Error occurred while writing the file: {e}")
        return False
    

uploaded_file = st.file_uploader("Upload an article", type="txt")
if uploaded_file is not None:
    content = uploaded_file.read().decode('utf-8')
    # st.write(content)
    file_path = "temp/file.txt"
    write_text_file(content, file_path)   
    
    loader = TextLoader(file_path)
    docs = loader.load()    
    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)
    db = Chroma.from_documents(texts, embeddings)    
    st.success("File Loaded Successfully!!")
        
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
    st.session_state.messages = [
        {"role": "assistant", "content": "Ask me anything!"}
    ]


if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
        st.session_state.chat_engine = None

if question := st.chat_input("Your question"): # Prompt for user input and save to chat history
    st.session_state.messages.append({"role": "user", "content": question})

for message in st.session_state.messages: # Display the prior chat messages
    with st.chat_message(message["role"]):
        st.write(message["content"])

# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = st.session_state.chat_engine.chat(prompt)
            similar_doc = db.similarity_search(question, k=1)
            context = similar_doc[0].page_content

            # set prompt template
            prompt_template = """
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Answer:
"""
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
            query_llm = LLMChain(llm=llm, prompt=prompt)
            response = query_llm.run({"context": context, "question": question})
            st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message) # Add response to message history
相关推荐
深圳多奥智能一卡(码、脸)通系统8 分钟前
智能机器人梯控系统(含二维码/刷卡/人脸识别)安装布线指南,结合工程规范与安全要点进行结构化优化,内容清晰、可操作性强
机器人·agv·机器狗·门禁·梯控·智能梯控·amr
你才是向阳花33 分钟前
如何用python来做小游戏
开发语言·python·pygame
'需尽欢'2 小时前
基于 Flask+Vue+MySQL的研学网站
python·mysql·flask
新子y3 小时前
【小白笔记】最大交换 (Maximum Swap)问题
笔记·python
程序员爱钓鱼4 小时前
Python编程实战 · 基础入门篇 | Python的缩进与代码块
后端·python
山顶夕景5 小时前
【RL】DAPO的后续:VAPO算法
大模型·强化学习·dapo·vapo
pr_note5 小时前
python|if判断语法对比
python
apocelipes7 小时前
golang unique包和字符串内部化
java·python·性能优化·golang
Geoking.8 小时前
NumPy zeros() 函数详解
python·numpy
Full Stack Developme8 小时前
java.text 包详解
java·开发语言·python