Streamlit + langchain 实现RAG问答机器人

py 复制代码
import os

os.environ["OPENAI_API_KEY"] = ''
os.environ["OPENAI_API_BASE"] = ''

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model = 'text-embedding-ada-002'
)
llm = OpenAI(
    model_name = 'gpt-3.5-turbo'
)

st.set_page_config(page_title="Chat", page_icon="", layout="centered", initial_sidebar_state="auto", menu_items=None)
# openai.api_key = st.secrets.openai_key
st.title("Chat with AI")

# function for writing uploaded file in temp
def write_text_file(content, file_path):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        return True
    except Exception as e:
        print(f"Error occurred while writing the file: {e}")
        return False
    

uploaded_file = st.file_uploader("Upload an article", type="txt")
if uploaded_file is not None:
    content = uploaded_file.read().decode('utf-8')
    # st.write(content)
    file_path = "temp/file.txt"
    write_text_file(content, file_path)   
    
    loader = TextLoader(file_path)
    docs = loader.load()    
    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)
    db = Chroma.from_documents(texts, embeddings)    
    st.success("File Loaded Successfully!!")
        
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
    st.session_state.messages = [
        {"role": "assistant", "content": "Ask me anything!"}
    ]


if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
        st.session_state.chat_engine = None

if question := st.chat_input("Your question"): # Prompt for user input and save to chat history
    st.session_state.messages.append({"role": "user", "content": question})

for message in st.session_state.messages: # Display the prior chat messages
    with st.chat_message(message["role"]):
        st.write(message["content"])

# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = st.session_state.chat_engine.chat(prompt)
            similar_doc = db.similarity_search(question, k=1)
            context = similar_doc[0].page_content

            # set prompt template
            prompt_template = """
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Answer:
"""
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
            query_llm = LLMChain(llm=llm, prompt=prompt)
            response = query_llm.run({"context": context, "question": question})
            st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message) # Add response to message history
相关推荐
杨超越luckly3 分钟前
HTML应用指南:利用POST请求获取全国极氪门店位置信息
python·arcgis·html·数据可视化·门店数据
青春不败 177-3266-05204 分钟前
最新AI-Python机器学习与深度学习实践技术应用
人工智能·python·深度学习·机器学习·卷积神经网络·语义分割·自编码
三维鱼4 分钟前
Python组合数据类型----5.2列表( 5.2.4 )
python
零日失眠者5 分钟前
【系统监控系列】005:CPU温度监控脚本
后端·python
远瞻。7 分钟前
【环境配置】快速转移conda上的python环境
开发语言·python·conda
上班职业摸鱼人9 分钟前
Python迭代器与生成器深度解析:吃透yield关键字,写出高效内存代码
python
棒棒的皮皮13 分钟前
【OpenCV】Python图像处理之图像加法运算
图像处理·python·opencv·计算机视觉
熊文豪17 分钟前
使用Python快速开发一个MCP服务器
服务器·开发语言·python·mcp
高洁0120 分钟前
卷积神经网络(CNN)
人工智能·python·深度学习·神经网络·transformer
安然无虞24 分钟前
LoadRunner性能测试详解·下
python·测试工具·压力测试