Streamlit + langchain 实现RAG问答机器人

py 复制代码
import os

os.environ["OPENAI_API_KEY"] = ''
os.environ["OPENAI_API_BASE"] = ''

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model = 'text-embedding-ada-002'
)
llm = OpenAI(
    model_name = 'gpt-3.5-turbo'
)

st.set_page_config(page_title="Chat", page_icon="", layout="centered", initial_sidebar_state="auto", menu_items=None)
# openai.api_key = st.secrets.openai_key
st.title("Chat with AI")

# function for writing uploaded file in temp
def write_text_file(content, file_path):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        return True
    except Exception as e:
        print(f"Error occurred while writing the file: {e}")
        return False
    

uploaded_file = st.file_uploader("Upload an article", type="txt")
if uploaded_file is not None:
    content = uploaded_file.read().decode('utf-8')
    # st.write(content)
    file_path = "temp/file.txt"
    write_text_file(content, file_path)   
    
    loader = TextLoader(file_path)
    docs = loader.load()    
    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)
    db = Chroma.from_documents(texts, embeddings)    
    st.success("File Loaded Successfully!!")
        
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
    st.session_state.messages = [
        {"role": "assistant", "content": "Ask me anything!"}
    ]


if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
        st.session_state.chat_engine = None

if question := st.chat_input("Your question"): # Prompt for user input and save to chat history
    st.session_state.messages.append({"role": "user", "content": question})

for message in st.session_state.messages: # Display the prior chat messages
    with st.chat_message(message["role"]):
        st.write(message["content"])

# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = st.session_state.chat_engine.chat(prompt)
            similar_doc = db.similarity_search(question, k=1)
            context = similar_doc[0].page_content

            # set prompt template
            prompt_template = """
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Answer:
"""
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
            query_llm = LLMChain(llm=llm, prompt=prompt)
            response = query_llm.run({"context": context, "question": question})
            st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message) # Add response to message history
相关推荐
RainbowJie19 分钟前
Gemini CLI 与 MCP 服务器:释放本地工具的强大潜力
java·服务器·spring boot·后端·python·单元测试·maven
工作碎碎念10 分钟前
NumPy------数值计算
python
工作碎碎念18 分钟前
pandas
python
A7bert7771 小时前
【YOLOv5部署至RK3588】模型训练→转换RKNN→开发板部署
c++·人工智能·python·深度学习·yolo·目标检测·机器学习
冷月半明1 小时前
时间序列篇:Prophet负责优雅,LightGBM负责杀疯
python·算法
教练我想打篮球_基本功重塑版2 小时前
L angChain 加载大模型
python·langchain
跟橙姐学代码4 小时前
手把手教你玩转 multiprocessing,让程序跑得飞起
前端·python·ipython
LCS-3124 小时前
Python爬虫实战: 爬虫常用到的技术及方案详解
开发语言·爬虫·python
穷儒公羊4 小时前
第二章 设计模式故事会之策略模式:魔王城里的勇者传说
python·程序人生·设计模式·面试·跳槽·策略模式·设计规范
心本无晴.4 小时前
面向过程与面向对象
python