Streamlit + langchain 实现RAG问答机器人

py 复制代码
import os

os.environ["OPENAI_API_KEY"] = ''
os.environ["OPENAI_API_BASE"] = ''

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model = 'text-embedding-ada-002'
)
llm = OpenAI(
    model_name = 'gpt-3.5-turbo'
)

st.set_page_config(page_title="Chat", page_icon="", layout="centered", initial_sidebar_state="auto", menu_items=None)
# openai.api_key = st.secrets.openai_key
st.title("Chat with AI")

# function for writing uploaded file in temp
def write_text_file(content, file_path):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        return True
    except Exception as e:
        print(f"Error occurred while writing the file: {e}")
        return False
    

uploaded_file = st.file_uploader("Upload an article", type="txt")
if uploaded_file is not None:
    content = uploaded_file.read().decode('utf-8')
    # st.write(content)
    file_path = "temp/file.txt"
    write_text_file(content, file_path)   
    
    loader = TextLoader(file_path)
    docs = loader.load()    
    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)
    db = Chroma.from_documents(texts, embeddings)    
    st.success("File Loaded Successfully!!")
        
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
    st.session_state.messages = [
        {"role": "assistant", "content": "Ask me anything!"}
    ]


if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
        st.session_state.chat_engine = None

if question := st.chat_input("Your question"): # Prompt for user input and save to chat history
    st.session_state.messages.append({"role": "user", "content": question})

for message in st.session_state.messages: # Display the prior chat messages
    with st.chat_message(message["role"]):
        st.write(message["content"])

# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = st.session_state.chat_engine.chat(prompt)
            similar_doc = db.similarity_search(question, k=1)
            context = similar_doc[0].page_content

            # set prompt template
            prompt_template = """
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Answer:
"""
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
            query_llm = LLMChain(llm=llm, prompt=prompt)
            response = query_llm.run({"context": context, "question": question})
            st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message) # Add response to message history
相关推荐
铁头七娃9 分钟前
Solidworks 2024 根据机器人装配体,生成urdf文件
机器人·ros·solidworks
woshikejiaih17 分钟前
2026年阅读软件Top5避坑攻略:告别卡顿闪退提升沉浸感
人工智能·python
小草cys32 分钟前
opencode/claude code自动写书啦
人工智能·自动化·大模型
007张三丰33 分钟前
2026马年开年寄语
python·ai工具·祝福·新技术·新年·马年
zlpzpl35 分钟前
Java总结进阶之路 (基础二 )
java·开发语言·python
喵手41 分钟前
Python爬虫实战:开放数据多格式入仓 - 构建统一数据管道(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·csv导出·开放数据多格式·统一数据管道
aircrushin43 分钟前
物理AI革命:当算法走出屏幕,制造业如何被重新定义
机器人
焦糖夹心1 小时前
python中,怎么同时输出字典的键和值?
开发语言·python
ValhallaCoder1 小时前
hot100-回溯II
数据结构·python·算法·回溯
2401_828890641 小时前
正/余弦位置编码 Sinusoidal Encoding
python·自然语言处理·transformer·embedding