Streamlit + langchain 实现RAG问答机器人

py 复制代码
import os

os.environ["OPENAI_API_KEY"] = ''
os.environ["OPENAI_API_BASE"] = ''

import streamlit as st
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(
    model = 'text-embedding-ada-002'
)
llm = OpenAI(
    model_name = 'gpt-3.5-turbo'
)

st.set_page_config(page_title="Chat", page_icon="", layout="centered", initial_sidebar_state="auto", menu_items=None)
# openai.api_key = st.secrets.openai_key
st.title("Chat with AI")

# function for writing uploaded file in temp
def write_text_file(content, file_path):
    try:
        with open(file_path, 'w') as file:
            file.write(content)
        return True
    except Exception as e:
        print(f"Error occurred while writing the file: {e}")
        return False
    

uploaded_file = st.file_uploader("Upload an article", type="txt")
if uploaded_file is not None:
    content = uploaded_file.read().decode('utf-8')
    # st.write(content)
    file_path = "temp/file.txt"
    write_text_file(content, file_path)   
    
    loader = TextLoader(file_path)
    docs = loader.load()    
    text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
    texts = text_splitter.split_documents(docs)
    db = Chroma.from_documents(texts, embeddings)    
    st.success("File Loaded Successfully!!")
        
if "messages" not in st.session_state.keys(): # Initialize the chat messages history
    st.session_state.messages = [
        {"role": "assistant", "content": "Ask me anything!"}
    ]


if "chat_engine" not in st.session_state.keys(): # Initialize the chat engine
        st.session_state.chat_engine = None

if question := st.chat_input("Your question"): # Prompt for user input and save to chat history
    st.session_state.messages.append({"role": "user", "content": question})

for message in st.session_state.messages: # Display the prior chat messages
    with st.chat_message(message["role"]):
        st.write(message["content"])

# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            # response = st.session_state.chat_engine.chat(prompt)
            similar_doc = db.similarity_search(question, k=1)
            context = similar_doc[0].page_content

            # set prompt template
            prompt_template = """
Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}
Answer:
"""
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
            query_llm = LLMChain(llm=llm, prompt=prompt)
            response = query_llm.run({"context": context, "question": question})
            st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message) # Add response to message history
相关推荐
小二·39 分钟前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼2 小时前
Python 神经网络项目常用语法
python
gz7seven2 小时前
BLIP-2模型的详解与思考
大模型·llm·多模态·blip·多模态大模型·blip-2·q-former
一念之坤3 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
wxl7812274 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
NoneCoder4 小时前
Python入门(12)--数据处理
开发语言·python
ZHOU_WUYI4 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
Robot2515 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
LKID体5 小时前
Python操作neo4j库py2neo使用(一)
python·oracle·neo4j
小尤笔记5 小时前
利用Python编写简单登录系统
开发语言·python·数据分析·python基础