概述
最近源神开源了 Grok-1 大模型,想着跑起来看看是什么样子。Grok 的 GitHub 里写的非常清楚了,首先 clone 代码,然后下载模型(大概 300 个 G),然后执行:
shell
pip install -r requirements.txt
python run.py
听起来很简单,就像把大象塞进冰箱需要几步一样。但是实际上模型要依赖 jax、jaxlib,这俩对环境要求还是比较苛刻的,所以尝试在服务器上运行了一下,各种报错,无奈只能使用容器一个个环境的尝试,最后成功构建出一个可以运行的镜像(下面会展示宿主机和容器的环境)。这个镜像是适用于我们的环境的,在别的环境下不知道能否正常运行,所以欢迎你使用后给出一点反馈。
我做了什么
首先模型文件非常大,不适合每次都 docker cp
进基础环境的容器中,而且如果这个容器经过调试后可用,那么 commit 时也会把模型顺带着保存,那么这个镜像的体积可就太大了。所以模型文件,使用 -v 挂载进容器的 /root
下。
而代码比较小,大概 900MB,调试中免不了要修改一些代码,并且这些是希望调试好后直接保存进容器的,所以我将程序代码通过 docker cp
复制到了容器里,并且提交的镜像里也有,方便你直接使用。
然后就是安装各种环境,遇到一个报错解决一个。
GitHub
项目地址:github.com/mayooot/gro...
欢迎 ✨
快速启动
首先拉取镜像,大概 8 个 G。
shell
docker pull mayooot/grok-docker:v1
然后要将下载的模型文件 ckpt-0
目录挂载进容器,下载教程可以参考这篇文章:Grok-1 本地部署过程。
最后启动容器。
- 注意要将 $your-dir/ckpt-0 替换成你的实际模型地址。
- 共享内存设置为了 600g,应该是够用的,如果不够,请自行调整。
- 要跑起来模型大概需要 8 张 A800/A100。所以这里使用 --gpus all 将所有 gpu 挂载进去。
shell
docker run -d -it \
--network=host \
--shm-size 600g \
--name=grok-docker \
--gpus all \
-v $your-dir/ckpt-0:/root/ckpt-0 \
mayooot/grok-docker:v1
训练
程序代码已经存在于容器中,并且修改了模型的加载路径,所以只要你正确的把 ckpt-0
挂载进容器,那么直接执行下面代码,然后等待结果。
shell
docker exec -it grok-docker bash
cd /root/grok-1/
python run.py
运行结果:
环境
宿主机环境
- OS: Ubuntu 20.04.4
- Physical Storage: 1TB
- Physical Memory: 2TB
- GPU: 8 * NVIDIA A100 80GB
- Docker: 24.0.5
- Nvidia Driver: 525.85.12
容器环境
yaml
$ cat /etc/issue
Ubuntu 22.04.1 LTS \n \l
$ python --version
Python 3.10.8
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0
$ pip show jax
Name: jax
Version: 0.4.26
Summary: Differentiate, compile, and transform Numpy code.
Home-page: https://github.com/google/jax
Author: JAX team
Author-email: jax-dev@google.com
License: Apache-2.0
Location: /root/miniconda3/lib/python3.10/site-packages
Requires: ml-dtypes, numpy, opt-einsum, scipy
Required-by: chex, flax, optax, orbax-checkpoint
$ pip show jaxlib
Name: jaxlib
Version: 0.4.26+cuda12.cudnn89
Summary: XLA library for JAX
Home-page: https://github.com/google/jax
Author: JAX team
Author-email: jax-dev@google.com
License: Apache-2.0
Location: /root/miniconda3/lib/python3.10/site-packages
Requires: ml-dtypes, numpy, scipy
Required-by: chex, optax, orbax-checkpoint