使用 Docker 容器运行 Grok-1| 提供可用的镜像

概述

最近源神开源了 Grok-1 大模型,想着跑起来看看是什么样子。Grok 的 GitHub 里写的非常清楚了,首先 clone 代码,然后下载模型(大概 300 个 G),然后执行:

shell 复制代码
pip install -r requirements.txt
python run.py

听起来很简单,就像把大象塞进冰箱需要几步一样。但是实际上模型要依赖 jax、jaxlib,这俩对环境要求还是比较苛刻的,所以尝试在服务器上运行了一下,各种报错,无奈只能使用容器一个个环境的尝试,最后成功构建出一个可以运行的镜像(下面会展示宿主机和容器的环境)。这个镜像是适用于我们的环境的,在别的环境下不知道能否正常运行,所以欢迎你使用后给出一点反馈。

我做了什么

首先模型文件非常大,不适合每次都 docker cp 进基础环境的容器中,而且如果这个容器经过调试后可用,那么 commit 时也会把模型顺带着保存,那么这个镜像的体积可就太大了。所以模型文件,使用 -v 挂载进容器的 /root 下。

而代码比较小,大概 900MB,调试中免不了要修改一些代码,并且这些是希望调试好后直接保存进容器的,所以我将程序代码通过 docker cp 复制到了容器里,并且提交的镜像里也有,方便你直接使用。

然后就是安装各种环境,遇到一个报错解决一个。

GitHub

项目地址:github.com/mayooot/gro...

欢迎 ✨

快速启动

首先拉取镜像,大概 8 个 G。

shell 复制代码
docker pull mayooot/grok-docker:v1

然后要将下载的模型文件 ckpt-0 目录挂载进容器,下载教程可以参考这篇文章:Grok-1 本地部署过程

最后启动容器。

  • 注意要将 $your-dir/ckpt-0 替换成你的实际模型地址。
  • 共享内存设置为了 600g,应该是够用的,如果不够,请自行调整。
  • 要跑起来模型大概需要 8 张 A800/A100。所以这里使用 --gpus all 将所有 gpu 挂载进去。
shell 复制代码
docker run -d -it \
--network=host \
--shm-size 600g \
--name=grok-docker \
--gpus all \
-v $your-dir/ckpt-0:/root/ckpt-0 \
mayooot/grok-docker:v1

训练

程序代码已经存在于容器中,并且修改了模型的加载路径,所以只要你正确的把 ckpt-0 挂载进容器,那么直接执行下面代码,然后等待结果。

shell 复制代码
docker exec -it grok-docker bash
cd /root/grok-1/
python run.py

运行结果:

环境

宿主机环境

  • OS: Ubuntu 20.04.4
  • Physical Storage: 1TB
  • Physical Memory: 2TB
  • GPU: 8 * NVIDIA A100 80GB
  • Docker: 24.0.5
  • Nvidia Driver: 525.85.12

容器环境

yaml 复制代码
$ cat /etc/issue
Ubuntu 22.04.1 LTS \n \l

$ python --version
Python 3.10.8

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

$ pip show jax
Name: jax
Version: 0.4.26
Summary: Differentiate, compile, and transform Numpy code.
Home-page: https://github.com/google/jax
Author: JAX team
Author-email: jax-dev@google.com
License: Apache-2.0
Location: /root/miniconda3/lib/python3.10/site-packages
Requires: ml-dtypes, numpy, opt-einsum, scipy
Required-by: chex, flax, optax, orbax-checkpoint

$ pip show jaxlib
Name: jaxlib
Version: 0.4.26+cuda12.cudnn89
Summary: XLA library for JAX
Home-page: https://github.com/google/jax
Author: JAX team
Author-email: jax-dev@google.com
License: Apache-2.0
Location: /root/miniconda3/lib/python3.10/site-packages
Requires: ml-dtypes, numpy, scipy
Required-by: chex, optax, orbax-checkpoint
相关推荐
liruiqiang051 分钟前
机器学习 - 投票感知器
人工智能·算法·机器学习
刘什么洋啊Zz3 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-4 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默4 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
c无序5 小时前
Docker-技术架构演进之路
docker
AnnyYoung6 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND7 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木7 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳7 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客7 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译