机器学习和深度学习-- 李宏毅(笔记与个人理解)Day 14

Day 14 Classfication (short version)

二分类的时候 用sigmoid 那不就是 logistic 回归嘛(softmax 的二分类等价)

Loss

哦 今天刚学的 ,KL散度 ,看来cross-entropy 和KL散度是等价的咯~ 我感觉我的直觉没错
这里MSE离得很远的时候会梯度消失,致使训练变得困难;

tell me WHY?

非线性激活函数:当使用非线性激活函数(如Sigmoid或Tanh)时,在输入值非常大或非常小的情况下,这些激活函数的梯度会接近于零。因此,如果在MSE损失函数的情况下,预测值与目标值之间的差异很大,经过激活函数的反向传播会产生非常小的梯度。

但是Cross Entropy 两个差距很大的时候整体乘积并不会无限大 --- 因为本质上描述的是两个概率分布的差异

相关推荐
智行众维2 分钟前
【用户心得】SCANeR™Studio学习笔记(六):人因工程Pack——一站式搞定驾驶模拟的多模态数据同步
笔记·学习·自动驾驶·汽车·仿真·scaner·人因工程
xian_wwq23 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
B站计算机毕业设计之家26 分钟前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
阿蒙Amon27 分钟前
JavaScript学习笔记:6.表达式和运算符
javascript·笔记·学习
最晚的py32 分钟前
ID3,C4.5,CART对比
决策树·机器学习
大筒木老辈子1 小时前
C++笔记---并发支持库(atomic)
java·c++·笔记
Cricyta Sevina1 小时前
Java Collection 集合进阶知识笔记
java·笔记·python·collection集合
胡萝卜3.01 小时前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC22371 小时前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
XiaoMu_0011 小时前
基于深度学习的农作物叶片病害智能识别与防治系统
人工智能·深度学习