机器学习和深度学习-- 李宏毅(笔记与个人理解)Day 14

Day 14 Classfication (short version)

二分类的时候 用sigmoid 那不就是 logistic 回归嘛(softmax 的二分类等价)

Loss

哦 今天刚学的 ,KL散度 ,看来cross-entropy 和KL散度是等价的咯~ 我感觉我的直觉没错
这里MSE离得很远的时候会梯度消失,致使训练变得困难;

tell me WHY?

非线性激活函数:当使用非线性激活函数(如Sigmoid或Tanh)时,在输入值非常大或非常小的情况下,这些激活函数的梯度会接近于零。因此,如果在MSE损失函数的情况下,预测值与目标值之间的差异很大,经过激活函数的反向传播会产生非常小的梯度。

但是Cross Entropy 两个差距很大的时候整体乘积并不会无限大 --- 因为本质上描述的是两个概率分布的差异

相关推荐
深度学习实战训练营1 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
努力变厉害的小超超2 小时前
ArkTS中的组件基础、状态管理、样式处理、class语法以及界面渲染
笔记·鸿蒙
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
aloha_7896 小时前
从零记录搭建一个干净的mybatis环境
java·笔记·spring·spring cloud·maven·mybatis·springboot
dsywws7 小时前
Linux学习笔记之vim入门
linux·笔记·学习
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
A-超10 小时前
vue3展示pag格式动态图
笔记
sniper_fandc10 小时前
深度学习基础—循环神经网络的梯度消失与解决
人工智能·rnn·深度学习
u01015265810 小时前
STM32F103C8T6学习笔记2--LED流水灯与蜂鸣器
笔记·stm32·学习
weixin_5182850510 小时前
深度学习笔记10-多分类
人工智能·笔记·深度学习