机器学习和深度学习-- 李宏毅(笔记与个人理解)Day 14

Day 14 Classfication (short version)

二分类的时候 用sigmoid 那不就是 logistic 回归嘛(softmax 的二分类等价)

Loss

哦 今天刚学的 ,KL散度 ,看来cross-entropy 和KL散度是等价的咯~ 我感觉我的直觉没错
这里MSE离得很远的时候会梯度消失,致使训练变得困难;

tell me WHY?

非线性激活函数:当使用非线性激活函数(如Sigmoid或Tanh)时,在输入值非常大或非常小的情况下,这些激活函数的梯度会接近于零。因此,如果在MSE损失函数的情况下,预测值与目标值之间的差异很大,经过激活函数的反向传播会产生非常小的梯度。

但是Cross Entropy 两个差距很大的时候整体乘积并不会无限大 --- 因为本质上描述的是两个概率分布的差异

相关推荐
shangyingying_11 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎2 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊2 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
小陈phd3 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习
ysa0510303 小时前
数论基础知识和模板
数据结构·c++·笔记·算法
Morpheon3 小时前
揭开预训练Pre-Training的力量:革新机器学习
人工智能·机器学习
勤奋的大熊猫3 小时前
机器学习中的 Agent 是什么?
人工智能·机器学习·agent
Blossom.1183 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
明朝百晓生3 小时前
深入理解Vapnik-Chervonenkis(VC)维度:机器学习泛化能力的理论基础
人工智能·机器学习
信息快讯3 小时前
机器学习驱动的智能化电池管理技术与应用
人工智能·机器学习·锂离子电池