【深度学习实战(1)】如何使用argparse模块设置自己的训练参数

一、argparse模块用法

1、argparse是一个python模块,用途是:命令行选项、参数和子命令的解释。

2、argparse库下载:pip install argparse

3、使用步骤:

导入argparse模块,并创建解释器

添加所需参数

解析参数

二、代码

cpp 复制代码
import argparse


def add_common_arguments(parser):
    """Add common arguments for training and inference."""
    parser.add_argument('--save_best_weights',
                        default='model_data/best.pth',
                        help="save best weights name.")
    parser.add_argument('--phi', type=str, default='s')
    parser.add_argument('--num_classes', type=int, default=10)

def get_parser_for_training():
    """Return argument parser for training."""
    # -------------------------------------------#
    #   Step 1. 构造解析器 argparse.ArgumentParser()
    # -------------------------------------------#
    parser = argparse.ArgumentParser("Training args")
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    parser.add_argument('--train_path',default='/data/train',help="The location of dataset.")
    parser.add_argument('--sync_bn', type=bool,default=False,help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--Cuda', type=bool,default=True)
    parser.add_argument('--fp16', type=bool,default=False)
    parser.add_argument('--num_workers', type=int, default=8,help="Number of workers for data loading.")
    parser.add_argument('--Total_epoch', type=int, default=300,help='Total Epoch')
    parser.add_argument('--Batch_size', type=int, default=64,help='Batch_size')
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    add_common_arguments(parser)
    return parser


if __name__=='__main__':
    # -------------------------------------------#
    #   Step 3. 解析参数 .parse_args()
    # -------------------------------------------#
    train_parser = get_parser_for_training()
    train_args = train_parser.parse_args()
    print(train_args)
    # -------------------------------------------#
    #   training args
    # -------------------------------------------#
    print("training data path:",train_args.train_path)
    print("training batch size:",train_args.Batch_size)
    print("Cuda:",train_args.Cuda)
    # -------------------------------------------#
    #   common args
    # -------------------------------------------#
    print("num classes:",train_args.num_classes)
    print("phi:",train_args.phi)
    print("save model path:",train_args.save_best_weights)

运行结果

用命令行查看parser的所有参数选项

用命令行修改parser的特定参数

相关推荐
WenGyyyL7 分钟前
使用OpenCV和MediaPipe库——驼背检测(姿态监控)
人工智能·python·opencv·算法·计算机视觉·numpy
蹦蹦跳跳真可爱58920 分钟前
Python----数据分析(Matplotlib四:Figure的用法,创建Figure对象,常用的Figure对象的方法)
python·数据分析·matplotlib
小杨4041 小时前
python入门系列六(文件操作)
人工智能·python·pycharm
xiaozaq2 小时前
在Eclipse中安装Lombok插件
java·python·eclipse
云空2 小时前
《FastRTC:开启实时音视频应用开发新时代》
python·实时音视频
九丶黎2 小时前
爬虫案例七Python协程爬取视频
爬虫·python·音视频
benben0442 小时前
Django小白级开发入门
后端·python·django
HerrFu2 小时前
可狱可囚的爬虫系列课程 19:静态页面和动态页面之分
爬虫·python
贾宝玉的玉宝贾2 小时前
FreeSWITCH 简单图形化界面40 - 使用mod_curl模块进行http请求
python·http·voip·freeswitch·sip
汤姆yu2 小时前
基于大数据的商品数据可视化及推荐系统
大数据·python·信息可视化·echarts·商品可视化