【深度学习实战(1)】如何使用argparse模块设置自己的训练参数

一、argparse模块用法

1、argparse是一个python模块,用途是:命令行选项、参数和子命令的解释。

2、argparse库下载:pip install argparse

3、使用步骤:

导入argparse模块,并创建解释器

添加所需参数

解析参数

二、代码

cpp 复制代码
import argparse


def add_common_arguments(parser):
    """Add common arguments for training and inference."""
    parser.add_argument('--save_best_weights',
                        default='model_data/best.pth',
                        help="save best weights name.")
    parser.add_argument('--phi', type=str, default='s')
    parser.add_argument('--num_classes', type=int, default=10)

def get_parser_for_training():
    """Return argument parser for training."""
    # -------------------------------------------#
    #   Step 1. 构造解析器 argparse.ArgumentParser()
    # -------------------------------------------#
    parser = argparse.ArgumentParser("Training args")
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    parser.add_argument('--train_path',default='/data/train',help="The location of dataset.")
    parser.add_argument('--sync_bn', type=bool,default=False,help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--Cuda', type=bool,default=True)
    parser.add_argument('--fp16', type=bool,default=False)
    parser.add_argument('--num_workers', type=int, default=8,help="Number of workers for data loading.")
    parser.add_argument('--Total_epoch', type=int, default=300,help='Total Epoch')
    parser.add_argument('--Batch_size', type=int, default=64,help='Batch_size')
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    add_common_arguments(parser)
    return parser


if __name__=='__main__':
    # -------------------------------------------#
    #   Step 3. 解析参数 .parse_args()
    # -------------------------------------------#
    train_parser = get_parser_for_training()
    train_args = train_parser.parse_args()
    print(train_args)
    # -------------------------------------------#
    #   training args
    # -------------------------------------------#
    print("training data path:",train_args.train_path)
    print("training batch size:",train_args.Batch_size)
    print("Cuda:",train_args.Cuda)
    # -------------------------------------------#
    #   common args
    # -------------------------------------------#
    print("num classes:",train_args.num_classes)
    print("phi:",train_args.phi)
    print("save model path:",train_args.save_best_weights)

运行结果

用命令行查看parser的所有参数选项

用命令行修改parser的特定参数

相关推荐
charlie11451419137 分钟前
现代 Python 学习笔记:Statements & Syntax
笔记·python·学习·教程·基础·现代python·python3.13
Coovally AI模型快速验证2 小时前
OmniNWM:突破自动驾驶世界模型三大瓶颈,全景多模态仿真新标杆(附代码地址)
人工智能·深度学习·机器学习·计算机视觉·自动驾驶·transformer
青春不败 177-3266-05203 小时前
GPT、DeepSeek等大语言模型应用
人工智能·gpt·深度学习·机器学习·语言模型·科研绘图
渡我白衣3 小时前
C++ 同名全局变量:当符号在链接器中“相遇”
开发语言·c++·人工智能·深度学习·microsoft·语言模型·人机交互
麦麦大数据3 小时前
F036 vue+flask中医热性药知识图谱可视化系统vue+flask+echarts+mysql
vue.js·python·mysql·flask·可视化·中医中药
移远通信4 小时前
MQTT协议:物联网时代的通信革命
python·物联网·网络协议
Amo Xiang4 小时前
JavaScript逆向与爬虫实战——基础篇(css反爬之动态字体实现原理及绕过)
爬虫·python·js逆向·动态字体
编程让世界美好4 小时前
选手评分问题(python)
python
java1234_小锋4 小时前
PyTorch2 Python深度学习 - PyTorch2安装与环境配置
开发语言·python·深度学习·pytorch2
CClaris4 小时前
深度学习——反向传播的本质
人工智能·python·深度学习