【深度学习实战(1)】如何使用argparse模块设置自己的训练参数

一、argparse模块用法

1、argparse是一个python模块,用途是:命令行选项、参数和子命令的解释。

2、argparse库下载:pip install argparse

3、使用步骤:

导入argparse模块,并创建解释器

添加所需参数

解析参数

二、代码

cpp 复制代码
import argparse


def add_common_arguments(parser):
    """Add common arguments for training and inference."""
    parser.add_argument('--save_best_weights',
                        default='model_data/best.pth',
                        help="save best weights name.")
    parser.add_argument('--phi', type=str, default='s')
    parser.add_argument('--num_classes', type=int, default=10)

def get_parser_for_training():
    """Return argument parser for training."""
    # -------------------------------------------#
    #   Step 1. 构造解析器 argparse.ArgumentParser()
    # -------------------------------------------#
    parser = argparse.ArgumentParser("Training args")
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    parser.add_argument('--train_path',default='/data/train',help="The location of dataset.")
    parser.add_argument('--sync_bn', type=bool,default=False,help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--Cuda', type=bool,default=True)
    parser.add_argument('--fp16', type=bool,default=False)
    parser.add_argument('--num_workers', type=int, default=8,help="Number of workers for data loading.")
    parser.add_argument('--Total_epoch', type=int, default=300,help='Total Epoch')
    parser.add_argument('--Batch_size', type=int, default=64,help='Batch_size')
    # -------------------------------------------#
    #   Step 2. 添加参数 .add_argument()
    # -------------------------------------------#
    add_common_arguments(parser)
    return parser


if __name__=='__main__':
    # -------------------------------------------#
    #   Step 3. 解析参数 .parse_args()
    # -------------------------------------------#
    train_parser = get_parser_for_training()
    train_args = train_parser.parse_args()
    print(train_args)
    # -------------------------------------------#
    #   training args
    # -------------------------------------------#
    print("training data path:",train_args.train_path)
    print("training batch size:",train_args.Batch_size)
    print("Cuda:",train_args.Cuda)
    # -------------------------------------------#
    #   common args
    # -------------------------------------------#
    print("num classes:",train_args.num_classes)
    print("phi:",train_args.phi)
    print("save model path:",train_args.save_best_weights)

运行结果

用命令行查看parser的所有参数选项

用命令行修改parser的特定参数

相关推荐
SunnyDays101133 分钟前
从图片到PPT:用Python实现多图片格式(PNG/JPG/SVG)到幻灯片的批量转换
python·图片转ppt·png转ppt·jpg转ppt·svg转ppt·添加图片到ppt
2501_9411458542 分钟前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
CodeCraft Studio1 小时前
Excel处理控件Aspose.Cells教程:使用Python从Excel工作表中删除数据透视表
开发语言·python·excel·aspose·aspose.cells·数据透视表
普通网友1 小时前
用Python批量处理Excel和CSV文件
jvm·数据库·python
linuxxx1101 小时前
高考志愿填报辅助系统
redis·后端·python·mysql·ai·django·高考
无妄无望1 小时前
ragflow代码学习切片方式(1)docling_parser.py
人工智能·python·学习
醒过来摸鱼1 小时前
9.12 sinc插值
python·线性代数·算法·numpy
努力的光头强1 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
小兔崽子去哪了2 小时前
Numpy、Panads
python·numpy·pandas