CVPR 2024 | Retrieval-Augmented Open-Vocabulary Object Detection

CVPR 2024 - Retrieval-Augmented Open-Vocabulary Object Detection

本文提出了一种新的开放词汇目标检测方法 Retrieval-Augmented Losses and visual Features (RALF)。RALF 通过从大型词汇库中检索词汇并增强损失函数和视觉特征来提高检测器对新类别的泛化能力。

该方法由两个部分组成:检索增强损失(RAL)和检索增强视觉特征(RAF)。

RAL RAF
  • RAL 通过使用与负词汇库的语义相似性的距离来优化嵌入空间。通过从大型词汇库中,按照语义相似性检索与真实类别标签相关的难负词汇和易负词汇。然后,RAL 使用这些词汇和真实框嵌入来定义难负损失和易负损失。
  • RAF 则利用大型语言模型(LLM)生成关于大型词汇库的描述,并从中提取有关目标的详细信息,以增强视觉特征。RAF 首先在离线阶段从目标提案中生成视觉特征。然后,在推理阶段,RAF 使用概念检索器和增强器从概念存储库中检索相关概念,并使用这些概念来增强视觉特征。

通过实验,作者证明了 RALF 在 COCO 和 LVIS 基准数据集上的有效性。特别是在 COCO 数据集的新类别上,APN50 提高了 3.4%,在 LVIS 数据集的新类别上,mask APr 提高了 3.6%。 未命名

相关推荐
万岳科技程序员小金19 分钟前
多商户商城APP源码开发的未来方向:云原生、电商中台与智能客服
人工智能·云原生·开源·软件开发·app开发·多商户商城系统源码·多商户商城app开发
蓝色 - Lanse19 分钟前
模型推理如何利用非前缀缓存
人工智能·缓存
CoookeCola22 分钟前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
CoovallyAIHub24 分钟前
视觉语言模型(VLM)深度解析:如何用它来处理文档?
深度学习·算法·计算机视觉
火星资讯36 分钟前
多形态机器人协同发力优艾智合引领核电运维智能化升级
人工智能
qq_4203620338 分钟前
AI在前端工作中的应用
前端·人工智能·sse
CoovallyAIHub44 分钟前
估值百亿独角兽创始人硕士论文曝光!宇树科技王兴兴的“性价比”思维10年前就已注定
深度学习·算法·计算机视觉
亚马逊云开发者1 小时前
Agentic AI基础设施实践经验系列(一):Agent应用开发与落地实践思考
人工智能
6v6-博客1 小时前
【效率工具】EXCEL批注提取工具
人工智能
晨非辰1 小时前
《数据结构风云》:二叉树遍历的底层思维>递归与迭代的双重视角
数据结构·c++·人工智能·算法·链表·面试