CVPR 2024 | Retrieval-Augmented Open-Vocabulary Object Detection

CVPR 2024 - Retrieval-Augmented Open-Vocabulary Object Detection

本文提出了一种新的开放词汇目标检测方法 Retrieval-Augmented Losses and visual Features (RALF)。RALF 通过从大型词汇库中检索词汇并增强损失函数和视觉特征来提高检测器对新类别的泛化能力。

该方法由两个部分组成:检索增强损失(RAL)和检索增强视觉特征(RAF)。

RAL RAF
  • RAL 通过使用与负词汇库的语义相似性的距离来优化嵌入空间。通过从大型词汇库中,按照语义相似性检索与真实类别标签相关的难负词汇和易负词汇。然后,RAL 使用这些词汇和真实框嵌入来定义难负损失和易负损失。
  • RAF 则利用大型语言模型(LLM)生成关于大型词汇库的描述,并从中提取有关目标的详细信息,以增强视觉特征。RAF 首先在离线阶段从目标提案中生成视觉特征。然后,在推理阶段,RAF 使用概念检索器和增强器从概念存储库中检索相关概念,并使用这些概念来增强视觉特征。

通过实验,作者证明了 RALF 在 COCO 和 LVIS 基准数据集上的有效性。特别是在 COCO 数据集的新类别上,APN50 提高了 3.4%,在 LVIS 数据集的新类别上,mask APr 提高了 3.6%。 未命名

相关推荐
JQLvopkk2 小时前
能用C#开发AI
开发语言·人工智能·c#
郝学胜-神的一滴3 小时前
当AI遇见架构:Vibe Coding时代的设计模式复兴
开发语言·数据结构·人工智能·算法·设计模式·架构
Clarence Liu9 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型9 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室9 小时前
AI4Science开源汇总
人工智能
CeshirenTester9 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis9 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs9 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷10 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极10 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发