第十三届蓝桥杯真题:x进制减法,数组切分,gcd,青蛙过河

目录

x进制减法

数组切分

gcd

青蛙过河


x进制减法

其实就是一道观察规律的题。你发现如果a这个位置上的数x,b这个位置上的数是y,那么此位置至少是max(x,y)+1进制。一定要把位置找对啊

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+10,mod=1000000007;
int len1,len2;
ll tmp,ans,a[N],b[N],c[N],n;
int main(){
	cin>>n;cin>>len1;
	for(int i=len1;i>=1;i--)cin>>a[i];
	cin>>len2;
	for(int i=len2;i>=1;i--)cin>>b[i];
	for(int i=len1;i>=1;i--){
		c[i]=max(max(a[i]+1,b[i]+1),2*1ll);
		a[i]=a[i]-b[i];
	}
	tmp=1;
	for(int i=1;i<=len1;i++){
		ans=(tmp*a[i]+ans)%mod;
		tmp=(tmp*c[i])%mod;
	}
	cout<<ans;
	return 0;
}
/*错解
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=1e5+10,mod=1000000007;
int len1,len2;
ll tmp,ans,a[N],b[N],c[N],n;
int main(){
	cin>>n;cin>>len1;
	for(int i=1;i<=len1;i++)cin>>a[i];
	cin>>len2;
	for(int i=1;i<=len2;i++)cin>>b[i];
	for(int i=1;i<=len1;i++){
		c[i]=max(max(a[i]+1,b[i]+1),2*1ll);
		a[i]=a[i]-b[i];//这个bug我找了两个小时,不能从高位开始减,
	}
	tmp=1;
	for(int i=len1;i>=1;i--){
		ans=(tmp*a[i]+ans)%mod;
		tmp=(tmp*c[i])%mod;
	}
cout<<ans;
	return 0;
}*/

数组切分

一道动态规划题,

我们设置f[i]表示从1到i区间的切法。那么可以从任意区间[j,i]转移,只要这个区间[j,i]也是满足题意的就行。那么如果判断[j,i]是否满足题意呢?

首先要注意到题上给出的是连续的的1~n的某个排列,然后我们只需要判断区间的极值和区间长度是否一样就行,如果相等,就说明此区间一定是连续的自然数。

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
long long f[10010],mod =1000000007;
int a[10010],n;
int main(){
	cin>>n;for(int i=1;i<=n;i++)cin>>a[i];
	f[0]=1;
	for(int i=1;i<=n;i++){
		int ma=a[i],mi=a[i];
		for(int j=i;j>=1;j--){
			ma=max(ma,a[j]);mi=min(mi,a[j]);
			if(i-j==ma-mi){
				f[i]=(f[i]+f[j-1])%mod;
			}
		}
	}
	cout<<f[n];
	return 0;
}

gcd

这道题本以为很麻烦,但是做着做着就发现了个不可思议的规律。

观察5和7,它们的最大gcd一定是2,为什么呢?因为你5+k和7+k始终保持差2,所以它们不可能有比2更大的gcd(因为它们两个一定是不等的)

对于一组a和b(假设b大于a),不妨另c=b-a。最终的a+k和b+k一定是差c,而且c必是它们的公因数。所以如果b+k是m*c的话,那么此时a+k必然也是c的倍数(因为它们两个差c啊),所以只需要枚举到b的下一个c的倍数即可,也就是(b/c+1)*c

验证5和9,它们差值为4,我们枚举到8和12时候发现gcd已经是4了,那么k就确定了

验证2和9,它们差值为7,我们一直枚举到7和14时发现gcd为7,那么此时k也确定了

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b,s,c;
int main(){
	cin>>a>>b;
	c=abs(a-b);
	if(a>b)swap(a,b);
	s=b/c;cout<<(s+1)*c-b;
	return 0;
}

青蛙过河

二分做法:

我们对跳跃距离二分,然后去判断这个距离能不能跑2x次即可,既然我们都已经确定了区间长度了。

那么不妨我们把这整个长度分成等长的mid区间,只需要保证所有的mid长度区间和都是大于2x的就行。

证明:(我只会反证法)

假设存在一组mid长度的区间和小于2x,那么经过x次来回,必然要经过此区间2x次,所以不成立。故原假设成立。

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
typedef long long ll;
int s[N];
ll n,x;
bool check(int m){
	for(int i=1;i+m<=n;i++){
		if(s[i+m-1]-s[i-1]<2*x) return false;
	}
	return true;
}
int main(){
	cin>>n>>x;int a;
	for(int i=1;i<n;i++)cin>>a,s[i]=s[i-1]+a;
	int l=1,r=n;
	while(l<=r){
		int mid=(l+r)>>1;
		if(check(mid)) r=mid-1;
		else l=mid+1;
	}
	cout<<l;
	return 0;
}
相关推荐
WaitWaitWait013 小时前
LeetCode每日一题4.20
算法·leetcode
蒟蒻小袁3 小时前
力扣面试150题--有效的括号和简化路径
算法·leetcode·面试
跳跳糖炒酸奶4 小时前
第十五讲、Isaaclab中在机器人上添加传感器
人工智能·python·算法·ubuntu·机器人
明月看潮生6 小时前
青少年编程与数学 02-018 C++数据结构与算法 06课题、树
数据结构·c++·算法·青少年编程·编程与数学
小指纹6 小时前
动态规划(一)【背包】
c++·算法·动态规划
_安晓6 小时前
数据结构 -- 图的应用(一)
数据结构·算法·图论
阳洞洞6 小时前
leetcode 二分查找应用
算法·leetcode·二分查找
猎猎长风6 小时前
【数据结构和算法】1. 数据结构和算法简介、二分搜索
数据结构·算法
Pasregret6 小时前
模板方法模式:定义算法骨架的设计模式
算法·设计模式·模板方法模式
左灯右行的爱情7 小时前
JVM-卡表
java·jvm·算法