【opencv】示例-phase_corr.cpp 捕获视频流并通过计算相位相关性来检测画面中的移动...

cpp 复制代码
// 包含OpenCV库的头文件
#include "opencv2/core.hpp" // 包含OpenCV核心功能
#include "opencv2/videoio.hpp" // 包含视频IO功能
#include "opencv2/highgui.hpp" // 包含高级GUI功能,显示图像
#include "opencv2/imgproc.hpp" // 包含图像处理功能


using namespace cv; // 使用OpenCV命名空间,方便调用OpenCV函数


int main(int, char* [])
{
    VideoCapture video(0); // 创建VideoCapture对象,用于捕获编号为0的摄像头视频
    
    // 定义一些Mat类型的变量用于存放处理的帧
    Mat frame, curr, prev, curr64f, prev64f, hann;
    char key; // 用于接收用户按键


    // 主循环
    do
    {
        video >> frame; // 从视频流中读取一帧保存到frame变量中
        cvtColor(frame, curr, COLOR_RGB2GRAY); // 将捕获的彩色帧转换为灰度图


        // 如果prev为空,说明是第一帧,需要进行初始化
        if(prev.empty())
        {
            prev = curr.clone(); // 将当前帧存储到prev中,用于下次迭代
            createHanningWindow(hann, curr.size(), CV_64F); // 创建汉宁窗,用于相位相关函数
        }


        // 将prev和curr的数据类型转换为CV_64F,用于相位相关函数
        prev.convertTo(prev64f, CV_64F);
        curr.convertTo(curr64f, CV_64F);


        // 计算prev和curr之间的相位偏移
        Point2d shift = phaseCorrelate(prev64f, curr64f, hann);
        double radius = std::sqrt(shift.x*shift.x + shift.y*shift.y); // 计算偏移的幅度


        // 如果偏移幅度大于5,绘制一个圆和线来表示偏移方向
        if(radius > 5)
        {
            Point center(curr.cols >> 1, curr.rows >> 1); // 计算帧的中心点
            // 在当前帧上绘制圆和线
            circle(frame, center, (int)radius, Scalar(0, 255, 0), 3, LINE_AA);
            line(frame, center, Point(center.x + (int)shift.x, center.y + (int)shift.y), Scalar(0, 255, 0), 3, LINE_AA);
        }


        imshow("phase shift", frame); // 显示经过相位相关偏移标示的图像
        key = (char)waitKey(2); // 等待2ms,如果有按键则获取到key变量


        prev = curr.clone(); // 更新prev帧为当前帧
    } while(key != 27); // 如果按键不是Esc键继续循环,Esc键ASCII码为27,用于退出循环


    return 0; // 程序结束,返回0
}
css 复制代码
createHanningWindow(hann, curr.size(), CV_64F);
bash 复制代码
Point2d shift = phaseCorrelate(prev64f, curr64f, hann)
相关推荐
lisw0510 分钟前
AI与AI代理:概念、区别与联系!
人工智能·机器学习·人工智能代理
无心水13 分钟前
【任务调度:数据库锁 + 线程池实战】1、多节点抢任务?SELECT FOR UPDATE SKIP LOCKED 才是真正的无锁调度神器
人工智能·分布式·后端·微服务·架构
本是少年21 分钟前
深度学习系列(一):经典卷积神经网络(LeNet)
人工智能·深度学习·cnn
王解37 分钟前
第一篇:初识 nanobot —— 一个微型 AI Agent 的诞生
人工智能·nanobot
瓦力的狗腿子1 小时前
AI技术的发展为卫星控制系统研发带来的影响与思考
人工智能
人工智能AI技术1 小时前
YOLOv9目标检测实战:用Python搭建你的第一个实时交通监控系统
人工智能
小雨中_1 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
拯救HMI的工程师2 小时前
【拯救HMI】工业HMI字体选择:拒绝“通用字体”,适配工业场景3大要求
人工智能
lczdyx2 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao2 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像