【opencv】示例-phase_corr.cpp 捕获视频流并通过计算相位相关性来检测画面中的移动...

cpp 复制代码
// 包含OpenCV库的头文件
#include "opencv2/core.hpp" // 包含OpenCV核心功能
#include "opencv2/videoio.hpp" // 包含视频IO功能
#include "opencv2/highgui.hpp" // 包含高级GUI功能,显示图像
#include "opencv2/imgproc.hpp" // 包含图像处理功能


using namespace cv; // 使用OpenCV命名空间,方便调用OpenCV函数


int main(int, char* [])
{
    VideoCapture video(0); // 创建VideoCapture对象,用于捕获编号为0的摄像头视频
    
    // 定义一些Mat类型的变量用于存放处理的帧
    Mat frame, curr, prev, curr64f, prev64f, hann;
    char key; // 用于接收用户按键


    // 主循环
    do
    {
        video >> frame; // 从视频流中读取一帧保存到frame变量中
        cvtColor(frame, curr, COLOR_RGB2GRAY); // 将捕获的彩色帧转换为灰度图


        // 如果prev为空,说明是第一帧,需要进行初始化
        if(prev.empty())
        {
            prev = curr.clone(); // 将当前帧存储到prev中,用于下次迭代
            createHanningWindow(hann, curr.size(), CV_64F); // 创建汉宁窗,用于相位相关函数
        }


        // 将prev和curr的数据类型转换为CV_64F,用于相位相关函数
        prev.convertTo(prev64f, CV_64F);
        curr.convertTo(curr64f, CV_64F);


        // 计算prev和curr之间的相位偏移
        Point2d shift = phaseCorrelate(prev64f, curr64f, hann);
        double radius = std::sqrt(shift.x*shift.x + shift.y*shift.y); // 计算偏移的幅度


        // 如果偏移幅度大于5,绘制一个圆和线来表示偏移方向
        if(radius > 5)
        {
            Point center(curr.cols >> 1, curr.rows >> 1); // 计算帧的中心点
            // 在当前帧上绘制圆和线
            circle(frame, center, (int)radius, Scalar(0, 255, 0), 3, LINE_AA);
            line(frame, center, Point(center.x + (int)shift.x, center.y + (int)shift.y), Scalar(0, 255, 0), 3, LINE_AA);
        }


        imshow("phase shift", frame); // 显示经过相位相关偏移标示的图像
        key = (char)waitKey(2); // 等待2ms,如果有按键则获取到key变量


        prev = curr.clone(); // 更新prev帧为当前帧
    } while(key != 27); // 如果按键不是Esc键继续循环,Esc键ASCII码为27,用于退出循环


    return 0; // 程序结束,返回0
}
css 复制代码
createHanningWindow(hann, curr.size(), CV_64F);
bash 复制代码
Point2d shift = phaseCorrelate(prev64f, curr64f, hann)
相关推荐
大数据张老师7 分钟前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI20 分钟前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算
m0_6176636222 分钟前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络
笔触狂放1 小时前
【机器学习】综合实训(一)
人工智能·机器学习
智算菩萨1 小时前
国内外最新AI语言模型行情分析2025年9月最新内容
人工智能
ningmengjing_1 小时前
激活函数:神经网络的“灵魂开关”
人工智能·深度学习·神经网络
Billy_Zuo1 小时前
人工智能机器学习——逻辑回归
人工智能·机器学习·逻辑回归
东风西巷2 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也2 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy2 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数