【opencv】示例-phase_corr.cpp 捕获视频流并通过计算相位相关性来检测画面中的移动...

cpp 复制代码
// 包含OpenCV库的头文件
#include "opencv2/core.hpp" // 包含OpenCV核心功能
#include "opencv2/videoio.hpp" // 包含视频IO功能
#include "opencv2/highgui.hpp" // 包含高级GUI功能,显示图像
#include "opencv2/imgproc.hpp" // 包含图像处理功能


using namespace cv; // 使用OpenCV命名空间,方便调用OpenCV函数


int main(int, char* [])
{
    VideoCapture video(0); // 创建VideoCapture对象,用于捕获编号为0的摄像头视频
    
    // 定义一些Mat类型的变量用于存放处理的帧
    Mat frame, curr, prev, curr64f, prev64f, hann;
    char key; // 用于接收用户按键


    // 主循环
    do
    {
        video >> frame; // 从视频流中读取一帧保存到frame变量中
        cvtColor(frame, curr, COLOR_RGB2GRAY); // 将捕获的彩色帧转换为灰度图


        // 如果prev为空,说明是第一帧,需要进行初始化
        if(prev.empty())
        {
            prev = curr.clone(); // 将当前帧存储到prev中,用于下次迭代
            createHanningWindow(hann, curr.size(), CV_64F); // 创建汉宁窗,用于相位相关函数
        }


        // 将prev和curr的数据类型转换为CV_64F,用于相位相关函数
        prev.convertTo(prev64f, CV_64F);
        curr.convertTo(curr64f, CV_64F);


        // 计算prev和curr之间的相位偏移
        Point2d shift = phaseCorrelate(prev64f, curr64f, hann);
        double radius = std::sqrt(shift.x*shift.x + shift.y*shift.y); // 计算偏移的幅度


        // 如果偏移幅度大于5,绘制一个圆和线来表示偏移方向
        if(radius > 5)
        {
            Point center(curr.cols >> 1, curr.rows >> 1); // 计算帧的中心点
            // 在当前帧上绘制圆和线
            circle(frame, center, (int)radius, Scalar(0, 255, 0), 3, LINE_AA);
            line(frame, center, Point(center.x + (int)shift.x, center.y + (int)shift.y), Scalar(0, 255, 0), 3, LINE_AA);
        }


        imshow("phase shift", frame); // 显示经过相位相关偏移标示的图像
        key = (char)waitKey(2); // 等待2ms,如果有按键则获取到key变量


        prev = curr.clone(); // 更新prev帧为当前帧
    } while(key != 27); // 如果按键不是Esc键继续循环,Esc键ASCII码为27,用于退出循环


    return 0; // 程序结束,返回0
}
css 复制代码
createHanningWindow(hann, curr.size(), CV_64F);
bash 复制代码
Point2d shift = phaseCorrelate(prev64f, curr64f, hann)
相关推荐
北京搜维尔科技有限公司14 分钟前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域17 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr18 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆23 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠32 分钟前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
老艾的AI世界1 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
翔云API1 小时前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境2 小时前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步2 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝