机器人规划算法——A*算法

最近在研读ROS中的A*算法,参见了文章

【ROS-Navigation】------ Astar路径规划算法解析

这里作为笔记:

问题1:如何理解如下代码?

cpp 复制代码
float QuadraticCalculator::calculatePotential(float* potential, unsigned char cost, int n, float prev_potential) {
    // get neighbors
    float u, d, l, r;
    l = potential[n - 1];
    r = potential[n + 1];
    u = potential[n - nx_];
    d = potential[n + nx_];
    //  ROS_INFO("[Update] c: %f  l: %f  r: %f  u: %f  d: %f\n",
    //     potential[n], l, r, u, d);
    //  ROS_INFO("[Update] cost: %d\n", costs[n]);

    // find lowest, and its lowest neighbor
    float ta, tc;
    if (l < r)
        tc = l;
    else
        tc = r;
    if (u < d)
        ta = u;
    else
        ta = d;

    float hf = cost; // traversability factor
    float dc = tc - ta;        // relative cost between ta,tc
    if (dc < 0)         // tc is lowest
            {
        dc = -dc;
        ta = tc;
    }

    // calculate new potential
    if (dc >= hf)        // if too large, use ta-only update
        return ta + hf;
    else            // two-neighbor interpolation update
    {
        // use quadratic approximation
        // might speed this up through table lookup, but still have to
        //   do the divide
        float d = dc / hf;
        float v = -0.2301 * d * d + 0.5307 * d + 0.7040;
        return ta + hf * v;
    }
}

我注意到,在计算相邻点的代价值时,使用 QuadraticCalculator::calculatePotential,生成的路径比较直,而使用PotentialCalculatorr::calculatePotential::calculatePotential计算的路径比较曲折。

这个函数使用了一个基于两个邻居之间相对代价的二维插值方法来计算新的潜在值。具体的算法原理如下:

  1. 首先计算左右邻居和上下邻居的值,分别存储在l、r、u和d中。

  2. 然后比较左右邻居的值,选择较小的作为tc;比较上下邻居的值,选择较小的作为ta。

  3. 接着计算每个邻居之间的相对代价dc,即tc和ta之间的差值。如果tc更小,则将dc取反,并将ta更新为tc。

  4. 根据代价因子hf(在此算法中为cost值)与dc的比较,决定使用单一邻居更新还是两个邻居插值更新。

  5. 如果dc大于等于hf,则直接返回ta加上hf作为新的潜在值。

  6. 如果dc小于hf,则进行两个邻居的插值更新。通过二次近似来计算v值,然后返回ta加上hf乘以v作为新的潜在值。

整个算法利用了两个邻居之间的相对代价来进行潜在值的更新,根据代价因子和相对代价的大小来决定更新策略,从而有效地平衡插值和单一邻居更新的权衡。

相关推荐
司铭鸿20 小时前
化学式解析的算法之美:从原子计数到栈的巧妙运用
linux·运维·服务器·算法·动态规划·代理模式·哈希算法
ekprada21 小时前
DAY 18 推断聚类后簇的类型
算法·机器学习·支持向量机
生信大表哥21 小时前
Python单细胞分析-基于leiden算法的降维聚类
linux·python·算法·生信·数信院生信服务器·生信云服务器
玫瑰花店21 小时前
万字C++中锁机制和内存序详解
开发语言·c++·算法
J_Xiong01171 天前
【VLNs篇】17:NaVid:基于视频的VLM规划视觉语言导航的下一步
人工智能·机器人
Elias不吃糖1 天前
LeetCode每日一练(209, 167)
数据结构·c++·算法·leetcode
铁手飞鹰1 天前
单链表(C语言,手撕)
数据结构·c++·算法·c·单链表
悦悦子a啊1 天前
项目案例作业(选做):使用文件改造已有信息系统
java·开发语言·算法
小殊小殊1 天前
【论文笔记】知识蒸馏的全面综述
人工智能·算法·机器学习
无限进步_1 天前
C语言动态内存管理:掌握malloc、calloc、realloc和free的实战应用
c语言·开发语言·c++·git·算法·github·visual studio