力扣--图论/Prim1584.连接所有点的最小费用

思路分析:

  1. 初始化 :获取点的数量,并创建两个辅助数组 adjvexlowcost,分别用于记录最小生成树的边信息和每个顶点到最小生成树的距离。
  2. Prim算法循环 :在每一次循环中,选择一个未加入最小生成树的顶点 k,使得从已加入最小生成树的顶点到 k 的距离最小。循环 n-1 次,每次选择一个顶点加入最小生成树。
  3. 找出下一个顶点 :遍历所有未加入最小生成树的顶点,选择距离最小的顶点 k,加入最小生成树,并标记顶点 k 已被访问。
  4. 更新最小生成树信息 :更新 lowcost 数组,更新每个顶点到最小生成树的距离。
  5. 计算总成本:计算最小生成树的总成本,即所有边的长度之和,并返回。
cpp 复制代码
class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size(); // 获取点的数量

        // 用于存储最小生成树的边信息
        vector<int> adjvex(n, 0); // 记录最小生成树的顶点的下标
        vector<int> lowcost(n, 0); // 记录从最小生成树中的某顶点到其它顶点的最小权值

        // 初始化lowcost数组,将除了第一个点以外的顶点到第一个点的距离记录下来
        for(int i = 1; i < n; i++)
            lowcost[i] = abs(points[i][0] - points[0][0]) + abs(points[i][1] - points[0][1]);

        // 用于记录顶点是否已被访问过
        vector<bool> visited(n, false);

        // Prim算法的主要循环,构建最小生成树
        for(int t = 0; t < n - 1; t++) {
            int k = 1, min = INT_MAX;
            // 找出lowcost数组中的最小值
            for(int i = 1; i < n; i++) {
                if(lowcost[i] < min && visited[i] == false) {
                    min = lowcost[i];
                    k = i;
                }
            }
            // 标记顶点k已被访问
            visited[k] = true;
            // 将k顶点到其它顶点的权值设为0,表示已加入最小生成树
            lowcost[k] = 0;
            // 更新lowcost数组中的值
            for(int i = 1; i < n; i++) {
                if(i != k) {
                    // 计算顶点i到顶点k的距离
                    int close = abs(points[i][0] - points[k][0]) + abs(points[i][1] - points[k][1]);
                    // 如果顶点i到顶点k的距离小于当前到顶点i的最小权值,则更新相应信息
                    if(lowcost[i] > close) {
                        adjvex[i] = k;
                        lowcost[i] = close;
                    }
                }
            }
        }

        // 计算最小生成树的总成本
        int num = 0;
        for(int i = 0; i < n; i++) {
            num += abs(points[i][0] - points[adjvex[i]][0]) + abs(points[i][1] - points[adjvex[i]][1]);
        }
        // 返回最小生成树的总成本
        return num;
    }
};
相关推荐
润 下21 分钟前
C语言——深入解析C语言指针:从基础到实践从入门到精通(二)
c语言·开发语言·经验分享·笔记·学习·程序人生
西阳未落25 分钟前
LeetCode——双指针(进阶)
c++·算法·leetcode
一二学长39 分钟前
异或相关的算法题
算法
say_fall1 小时前
精通C语言(4.四种动态内存有关函数)
c语言·开发语言
暴力求解1 小时前
c++类和对象(下)
开发语言·c++·算法
小秋学嵌入式-不读研版1 小时前
C65-枚举类型
c语言·开发语言·笔记
艾莉丝努力练剑1 小时前
【Linux指令 (二)】不止于入门:探索Linux系统核心与指令的深层逻辑,理解Linux系统理论核心概念与基础指令
linux·服务器·数据结构·c++·centos
深栈2 小时前
机器学习:支持向量机
算法·机器学习·支持向量机
Mr_WangAndy2 小时前
C++设计模式_结构型模式_外观模式Facade
c++·设计模式·外观模式
FreeBuf_2 小时前
Happy DOM曝CVSS 9.4严重RCE漏洞,PoC已公开(CVE-2025-61927)
java·c语言·c++·python·php