力扣--图论/Prim1584.连接所有点的最小费用

思路分析:

  1. 初始化 :获取点的数量,并创建两个辅助数组 adjvexlowcost,分别用于记录最小生成树的边信息和每个顶点到最小生成树的距离。
  2. Prim算法循环 :在每一次循环中,选择一个未加入最小生成树的顶点 k,使得从已加入最小生成树的顶点到 k 的距离最小。循环 n-1 次,每次选择一个顶点加入最小生成树。
  3. 找出下一个顶点 :遍历所有未加入最小生成树的顶点,选择距离最小的顶点 k,加入最小生成树,并标记顶点 k 已被访问。
  4. 更新最小生成树信息 :更新 lowcost 数组,更新每个顶点到最小生成树的距离。
  5. 计算总成本:计算最小生成树的总成本,即所有边的长度之和,并返回。
cpp 复制代码
class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size(); // 获取点的数量

        // 用于存储最小生成树的边信息
        vector<int> adjvex(n, 0); // 记录最小生成树的顶点的下标
        vector<int> lowcost(n, 0); // 记录从最小生成树中的某顶点到其它顶点的最小权值

        // 初始化lowcost数组,将除了第一个点以外的顶点到第一个点的距离记录下来
        for(int i = 1; i < n; i++)
            lowcost[i] = abs(points[i][0] - points[0][0]) + abs(points[i][1] - points[0][1]);

        // 用于记录顶点是否已被访问过
        vector<bool> visited(n, false);

        // Prim算法的主要循环,构建最小生成树
        for(int t = 0; t < n - 1; t++) {
            int k = 1, min = INT_MAX;
            // 找出lowcost数组中的最小值
            for(int i = 1; i < n; i++) {
                if(lowcost[i] < min && visited[i] == false) {
                    min = lowcost[i];
                    k = i;
                }
            }
            // 标记顶点k已被访问
            visited[k] = true;
            // 将k顶点到其它顶点的权值设为0,表示已加入最小生成树
            lowcost[k] = 0;
            // 更新lowcost数组中的值
            for(int i = 1; i < n; i++) {
                if(i != k) {
                    // 计算顶点i到顶点k的距离
                    int close = abs(points[i][0] - points[k][0]) + abs(points[i][1] - points[k][1]);
                    // 如果顶点i到顶点k的距离小于当前到顶点i的最小权值,则更新相应信息
                    if(lowcost[i] > close) {
                        adjvex[i] = k;
                        lowcost[i] = close;
                    }
                }
            }
        }

        // 计算最小生成树的总成本
        int num = 0;
        for(int i = 0; i < n; i++) {
            num += abs(points[i][0] - points[adjvex[i]][0]) + abs(points[i][1] - points[adjvex[i]][1]);
        }
        // 返回最小生成树的总成本
        return num;
    }
};
相关推荐
Dream it possible!12 分钟前
LeetCode 面试经典 150_二分查找_在排序数组中查找元素的第一个和最后一个位置(115_34_C++_中等)
c++·leetcode·面试
冰清-小魔鱼33 分钟前
各类数据存储结构总结
开发语言·数据结构·数据库
月光下的麦克1 小时前
如何查案动态库版本
linux·运维·c++
小六子成长记1 小时前
【C++】:搜索二叉树的模拟实现
数据结构·c++·算法
汉克老师2 小时前
GESP2025年9月认证C++二级真题与解析(编程题1(优美的数字))
c++·算法·整除·枚举算法·求余·拆数
黎雁·泠崖2 小时前
吃透Java操作符进阶:算术+移位操作符 全解析(Java&C区别+完整案例+避坑指南)
java·c语言·python
carver w2 小时前
MFC入门教程 最简版
c++·mfc
王老师青少年编程2 小时前
信奥赛C++提高组csp-s之倍增算法
c++·csp·信奥赛·csp-s·提高组·倍增算法·rmq
低频电磁之道2 小时前
编译C++的几种方式(MSVC编译器)
开发语言·c++
Zsy_0510032 小时前
【C++】类和对象(一)
开发语言·c++