arima模型python代码

ARIMA(自回归积分滑动平均模型,AutoRegressive Integrated Moving Average)是一种时间序列预测模型,它结合了自回归(AR)模型、差分(I)操作和滑动平均(MA)模型。在Python中,可以使用`statsmodels`库来实现ARIMA模型。以下是一个简单的ARIMA模型实现示例:

```python

import pandas as pd

import numpy as np

from statsmodels.tsa.arima.model import ARIMA

from statsmodels.tsa.stattools import adfuller

假设你有一个名为'timeseries_data'的Pandas时间序列数据

timeseries_data = pd.Series-your_timeseries_data-

首先,进行单位根检验,确定d的值

result = adfuller(timeseries_data)

print('ADF Statistic: %f' % result[0])

print('p-value: %f' % result[1])

if result[1] > 0.05:

print('You should differenciate your time series.')

else:

print('You don\'t need to differenciate your time series.')

假设经过检验后,确定d=1,即需要进行一次差分

diff = timeseries_data.diff().dropna()

接下来,我们需要确定AR和MA部分的阶数p和q

这可以通过观察自相关图(ACF)和偏自相关图(PACF)来确定

或者使用网格搜索等方法自动选择最优参数

假设我们选择了p=2, d=1, q=2的ARIMA模型

model = ARIMA(diff, order=(2, 1, 2))

拟合模型

results = model.fit()

打印模型的摘要信息

print(results.summary())

进行预测,预测未来n步(例如12步)

n_periods = 12

forecast, stderr, conf_int = results.forecast(steps=n_periods)

打印预测结果

print(forecast)

可视化预测结果和置信区间

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))

plt.plot(forecast.index, forecast, label='Forecast')

plt.fill_between(forecast.index, conf_int[:, 0], conf_int[:, 1], color='pink', alpha=0.3)

plt.legend()

plt.show()

```

在上述代码中,我们首先使用`adfuller`函数进行单位根检验,以确定时间序列是否平稳,以及需要进行几次差分(d的值)。然后,我们根据ACF和PACF图或者其他方法来确定AR(p)和MA(q)部分的阶数。最后,我们使用`ARIMA`函数创建模型并拟合数据,然后进行预测。

请注意,确定ARIMA模型的p、d、q参数通常需要根据时间序列的特点和统计检验来进行,这可能需要一定的经验和专业知识。在实际应用中,可能需要尝试不同的参数组合,并通过模型诊断来选择最佳的模型。

相关推荐
_OP_CHEN27 分钟前
C++基础:(十二)list类的基础使用
开发语言·数据结构·c++·stl·list类·list核心接口·list底层原理
Bellafu6661 小时前
selenium常用的等待有哪些?
python·selenium·测试工具
小白学大数据2 小时前
Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
爬虫·python·ajax
2401_841495643 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Adorable老犀牛3 小时前
阿里云-ECS实例信息统计并发送统计报告到企业微信
python·阿里云·云计算·企业微信
ONE_PUNCH_Ge3 小时前
Go 语言变量
开发语言
幼稚园的山代王3 小时前
go语言了解
开发语言·后端·golang
倔强青铜三3 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三3 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
晚风残4 小时前
【C++ Primer】第六章:函数
开发语言·c++·算法·c++ primer