斐波那契(快速矩阵幂)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

提示:这里可以添加本文要记录的大概内容:

斐波那契数列就是前面俩个数字相加,例如1,1,2,3,5,8,11...

(前面俩个1要相等


提示:以下是本篇文章正文内容,下面案例可供参考

一、斐波那契数列代码

java 复制代码
public class FibonacciSeries {  
    public static void main(String[] args) {  
        int n = 10; // 你可以改变这个值来计算斐波那契数列的前n个数  
        printFibonacciSeries(n);  
    }  
  
    public static void printFibonacciSeries(int n) {  
        int t1 = 0, t2 = 1;  
        System.out.print("斐波那契数列的前 " + n + " 个数是:");  
  
        for (int i = 1; i <= n; ++i) {  
            System.out.print(t1 + " ");  
            int sum = t1 + t2;  
            t1 = t2;  
            t2 = sum;  
        }  
    }  
}

二、矩阵快速幂(斐波那契)

AcWing 1305. 1303. 斐波那契前 n 项和

前面这个base是指的是(fn,f(n+1),Sn))

res是推出来的公式,由于矩阵乘法中,是列*行=得到的数;

代码如下(示例):

c 复制代码
public class Main{
    static int m ;
    public static void main(String[] args){
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        m = input.nextInt();
        //1 1 2  3
        long[][] matrix = cal(n-1);
        // for(int i = 0 ; i < 3 ; i++){
        //     System.out.println(Arrays.toString(matrix[i]));
        // }
        long res = 0;
        for(int i = 0 ; i < 3 ; i++){
            res = (res + matrix[i][2]) % m;
        }
        System.out.println(res);

    }
    public static  long[][] cal(int n ){
        long[][] base = {{0,1,0},{1,1,1},{0,0,1}};
        long[][] res = {{1,0,0},{0,1,0},{0,0,1}};
        while(n > 0){
            if((n & 1) == 1){
                res = multi(res,base);
            }
            n = n >> 1;
            base = multi(base,base);
        }
        return res;
    }
    public static long[][] multi(long[][] A,long[][] B){
        long[][] res = new long[A.length][B[0].length];
        for(int i = 0 ; i < A.length ; i++){
            for(int j = 0 ; j < B[0].length ; j++){
                for(int k = 0 ; k < A[0].length ; k++){
                    res[i][j] = (res[i][j] + A[i][k] * B[k][j]) % m;
                }
            }
        }
        return res;
    }
}

相关推荐
三万棵雪松7 分钟前
1.系统学习-线性回归
算法·机器学习·回归·线性回归·监督学习
Easy数模26 分钟前
基于LR/GNB/SVM/KNN/DT算法的鸢尾花分类和K-Means算法的聚类分析
算法·机器学习·支持向量机·分类·聚类
天天打码33 分钟前
ThinkPHP项目如何关闭runtime下Log日志文件记录
android·java·javascript
2401_8582861137 分钟前
117.【C语言】数据结构之排序(选择排序)
c语言·开发语言·数据结构·笔记·算法·排序算法
魔道不误砍柴功40 分钟前
Java 中反射的高级用法:窥探 Java 世界的魔法之门
java·开发语言·python
P7进阶路1 小时前
实现用户登录系统的前后端开发
java
2401_857617621 小时前
“无缝购物体验”:跨平台网上购物商城的设计与实现
java·开发语言·前端·安全·架构·php
thesky1234561 小时前
活着就好20241226
学习·算法
事业运财运爆棚1 小时前
7种server的服务器处理结构模型
java·linux·服务器
td爆米花1 小时前
C#冒泡排序
数据结构·算法·排序算法