[leetcode]longest-consecutive-sequence 最长连续序列

. - 力扣(LeetCode)

哈希表

思路和算法

我们考虑枚举数组中的每个数 xxx,考虑以其为起点,不断尝试匹配 x+1,x+2,⋯x+1, x+2, \cdotsx+1,x+2,⋯ 是否存在,假设最长匹配到了 x+yx+yx+y,那么以 xxx 为起点的最长连续序列即为 x,x+1,x+2,⋯ ,x+yx, x+1, x+2, \cdots, x+yx,x+1,x+2,⋯,x+y,其长度为 y+1y+1y+1,我们不断枚举并更新答案即可。

对于匹配的过程,暴力的方法是 O(n)O(n)O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一个哈希表存储数组中的数,这样查看一个数是否存在即能优化至 O(1)O(1)O(1) 的时间复杂度。

仅仅是这样我们的算法时间复杂度最坏情况下还是会达到 O(n2)O(n^2)O(n

2

)(即外层需要枚举 O(n)O(n)O(n) 个数,内层需要暴力匹配 O(n)O(n)O(n) 次),无法满足题目的要求。但仔细分析这个过程,我们会发现其中执行了很多不必要的枚举,如果已知有一个 x,x+1,x+2,⋯ ,x+yx, x+1, x+2, \cdots, x+yx,x+1,x+2,⋯,x+y 的连续序列,而我们却重新从 x+1x+1x+1,x+2x+2x+2 或者是 x+yx+yx+y 处开始尝试匹配,那么得到的结果肯定不会优于枚举 xxx 为起点的答案,因此我们在外层循环的时候碰到这种情况跳过即可。

那么怎么判断是否跳过呢?由于我们要枚举的数 xxx 一定是在数组中不存在前驱数 x−1x-1x−1 的,不然按照上面的分析我们会从 x−1x-1x−1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x−1x-1x−1 即能判断是否需要跳过了。

复制代码
class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        unordered_set<int> num_set;
        for (const int& num : nums) {
            num_set.insert(num);
        }

        int longestStreak = 0;

        for (const int& num : num_set) {
            if (!num_set.count(num - 1)) {
                int currentNum = num;
                int currentStreak = 1;

                while (num_set.count(currentNum + 1)) {
                    currentNum += 1;
                    currentStreak += 1;
                }

                longestStreak = max(longestStreak, currentStreak);
            }
        }

        return longestStreak;           
    }
};
相关推荐
黑听人5 小时前
【力扣 困难 C】329. 矩阵中的最长递增路径
c语言·leetcode
YuTaoShao7 小时前
【LeetCode 热题 100】141. 环形链表——快慢指针
java·算法·leetcode·链表
小小小新人121238 小时前
C语言 ATM (4)
c语言·开发语言·算法
你的冰西瓜8 小时前
C++排序算法全解析(加强版)
c++·算法·排序算法
এ᭄画画的北北8 小时前
力扣-31.下一个排列
算法·leetcode
绝无仅有9 小时前
企微审批对接错误与解决方案
后端·算法·架构
趣多多代言人10 小时前
从零开始手写嵌入式实时操作系统
开发语言·arm开发·单片机·嵌入式硬件·面试·职场和发展·嵌入式
用户50408278583910 小时前
1. RAG 权威指南:从本地实现到生产级优化的全面实践
算法
Python×CATIA工业智造11 小时前
详细页智能解析算法:洞悉海量页面数据的核心技术
爬虫·算法·pycharm