OpenCV基本图像处理操作(四)——傅立叶变换

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使得图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。

  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
傅立叶变换实现低通滤波
python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()                
傅立叶变换实现高通滤波
python 复制代码
img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()    
相关推荐
JoySSLLian12 分钟前
手把手教你安装免费SSL证书(附宝塔/Nginx/Apache配置教程)
网络·人工智能·网络协议·tcp/ip·nginx·apache·ssl
BestSongC13 分钟前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
模型时代20 分钟前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶23 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<25 分钟前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
那个村的李富贵39 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器42 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆42 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow72424442 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
lxs-43 分钟前
CANN计算机视觉算子库ops-cv全面解析:图像处理与目标检测的高性能引擎
图像处理·目标检测·计算机视觉