Matlab-AMF算法(自适应中值滤波Adaptive Median Filtering)

作者:翟天保Steven

版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处

实现原理

AMF(Adaptive Median Filter,自适应中值滤波)是一种用于图像处理和信号处理的滤波算法,其目的是在保持图像细节的同时去除噪声。它是基于中值滤波的一种改进,可以根据局部像素的灰度值特征自适应地调整滤波器的大小和形状。

AMF算法的主要思想是根据像素邻域的特征动态调整滤波器的尺寸和形状,以适应不同区域的噪声水平和图像细节。具体步骤如下:

  1. 参数和初始化

    • 函数接受一个输入图像input和一个整数参数winSize,表示滤波器的初始大小。
    • 创建一个和输入图像大小相同的输出图像output,用于存储滤波结果。
    • 变量 R 为窗口半径的最大限制值。
  2. 窗口处理

    • 对于每个像素(i, j),以其为中心构建一个大小为(2*r+1)*(2*r+1)的窗口。
    • 在窗口边界进行限制,防止越界。
  3. 窗口数据排序

    • 将窗口内的像素值存储在 datas 中,并进行排序。
  4. 计算中值和最值

    • 计算排序后的数据中的最小值 minValue、最大值 maxValue 和中值 midValue
  5. 判断是否需要扩大窗口

    • 根据中值与最小值、最大值的差值是否超过某个阈值 thresh 来决定是否需要扩大窗口。
    • 如果窗口内的中值不在最小值和最大值之间一定范围内,则继续扩大窗口,直到r大于R。
  6. 滤波处理

    • 如果当前像素值与窗口最值的差值大于阈值,说明不需要滤波,直接将当前像素值赋给输出图像的对应位置。
    • 否则,将窗口内的中值赋给输出图像的对应位置。
  7. 返回结果

    • 返回处理后的输出图像。

AMF算法的优点是能够有效地处理不同区域的噪声和图像细节,因为它在滤波器大小和形状上具有自适应性。然而,它也有一些缺点,比如计算复杂度较高,处理速度较慢,特别是对于大尺寸的滤波器。

总的来说,AMF算法是一种灵活而有效的滤波器,特别适用于那些噪声水平不均匀且图像细节丰富的场景,尤其是针对椒盐噪声。

功能函数代码

为了对比效果,我自写了一个经典的中值滤波,和AMF进行对比。注意别用Matlab自带的中值滤波,那个是内部函数执行,速度很快,脚本M代码和其没有可比性。如下是两个算法的代码。

function output = adaptiveMedianFiltering(input, winSize)
    [row, col] = size(input);
    output = uint8(zeros(row, col));
    R = floor(winSize / 2);
    % 遍历处理
    for i = 1:row
        for j = 1:col
            r = 1;
            while r <= R
                % 卷积窗口边界限制,防止越界
                ms = max(i - r, 1);
                me = min(i + r, row);
                ns = max(j - r, 1);
                ne = min(j + r, col);
                % 窗口内有效数据排序
                datas = reshape(input(ms:me, ns:ne), [], 1);
                % 计算数值
                minValue = min(datas);
                maxValue = max(datas);
                midValue = median(datas);
                % 若窗口内中值不为在最值一定范围内,则说明当前窗口尺寸足够,不需要扩展也可完成有效滤波;反之,则继续扩大窗口,直到最大窗口尺寸
                thresh = (maxValue - minValue) * 0.02;
                if (midValue - minValue) > thresh && (maxValue - midValue) > thresh
                    % 若数据本身就不为最值,则不需要滤波,这也是自适应算法保持高分辨的关键
                    if (input(i, j) - minValue) > thresh && (maxValue - input(i, j)) > thresh
                        output(i, j) = input(i, j);
                    % 若为最值,则说明当前数值大概率是噪声信息,进行中值滤波
                    else
                        output(i, j) = midValue;
                    end
                    break;
                else
                    r = r + 1;
                end
                % 如果窗口尺寸达到限制了,则直接滤波
                if r > R
                    output(i, j) = midValue;
                end
            end
        end
    end
end
cpp 复制代码
function output = myMedianFilter(input, windowSize)
    [rows, cols] = size(input);
    output = uint8(zeros(rows, cols));

    % 计算窗口半径
    R = floor(windowSize / 2);

    % 对每个像素进行处理
    for i = 1:rows
        for j = 1:cols
            % 获取当前像素的窗口范围
            start_row = max(1, i - R);
            end_row = min(rows, i + R);
            start_col = max(1, j - R);
            end_col = min(cols, j + R);
            
            % 提取窗口内的像素值
            window = input(start_row:end_row, start_col:end_col);
            
            % 对窗口内的像素进行排序,并计算中值
            sorted_window = sort(window(:));
            median_index = floor(numel(sorted_window) / 2) + 1;
            median_value = sorted_window(median_index);
            
            % 将中值赋给输出图像的当前像素
            output(i, j) = median_value;
        end
    end
end

Matlab测试代码

cpp 复制代码
% 读取图像
image = imread('test.jpg');
image_gray = rgb2gray(image);

% 添加随机椒盐噪声
noise = image_gray;
[row, col] = size(image_gray);
for i = 1:10:row
    for j = 1:10:col
        noise(i, j) = randi([0, 255]);
    end
end

% 传统中值滤波
winSize = 15;
tic
median = myMedianFilter(noise, [winSize, winSize]);
toc

% AMF算法处理
tic
resultimage = adaptiveMedianFiltering(noise, winSize);
toc

% 显示图像
figure;
subplot(2, 2, 1);
imshow(image_gray);
title('Original Image');
subplot(2, 2, 2);
imshow(noise);
title('Noisy Image');
subplot(2, 2, 3);
imshow(median);
title('Median Processed Image');
subplot(2, 2, 4);
imshow(resultimage);
title('AMF Processed Image');

测试效果

图1 对比

如上图所示,经典中值滤波算法会让整个图模糊失真,而AMF算法可以很好保证图像细节不丢失。
图2 计算速度

计算速度方面,滤波窗尺寸15*15,经典中值滤波速度16s,AMF只有6s,这是因为自适应窗口并非每次都会扩展到15,可能3、5、7的时候就已经完成滤波了,因此速度快。

C++版本见(OpenCV):

OpenCV-AMF算法(自适应中值滤波Adaptive Median Filtering)-CSDN博客

如果函数有什么可以改进完善的地方,非常欢迎大家指出,一同进步何乐而不为呢~

如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!

相关推荐
TaoYuan__1 小时前
机器学习的常用算法
人工智能·算法·机器学习
ZPC82102 小时前
OpenCV—颜色识别
人工智能·opencv·计算机视觉
Mr.简锋2 小时前
vs2022搭建opencv开发环境
人工智能·opencv·计算机视觉
用户40547878374822 小时前
深度学习笔记 - 使用YOLOv5中的c3模块进行天气识别
算法
m0_743106462 小时前
论文笔记:no pose,no problem-基于dust3r输出GS参数实现unpose稀疏重建
论文阅读·深度学习·计算机视觉·3d·几何学
weixin_443290692 小时前
【论文阅读】InstructPix2Pix: Learning to Follow Image Editing Instructions
论文阅读·人工智能·计算机视觉
马上到我碗里来2 小时前
Simulink对仿真数据进行FFT频谱分析
matlab·simulink·fft
十七算法实验室2 小时前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
黑不拉几的小白兔2 小时前
PTA部分题目C++重练
开发语言·c++·算法
迷迭所归处2 小时前
动态规划 —— dp 问题-买卖股票的最佳时机IV
算法·动态规划