Python实现BOA蝴蝶优化算法优化卷积神经网络回归模型(CNN回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1 . 项目背景

蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算法。该算法受到了蝴蝶觅食和交配行为的启发,蝴蝶接收/感知并分析空气中的气味,以确定食物来源/交配伙伴的潜在方向。

蝴蝶利用它们的嗅觉、视觉、味觉、触觉和听觉来寻找食物和伴侣,这些感觉也有助于它们从一个地方迁徙到另一个地方,逃离捕食者并在合适的地方产卵。在所有感觉中,嗅觉是最重要的,它帮助蝴蝶寻找食物(通常是花蜜)。蝴蝶的嗅觉感受器分散在蝴蝶的身体部位,如触角、腿、触须等。这些感受器实际上是蝴蝶体表的神经细胞,被称为化学感受器。它引导蝴蝶寻找最佳的交配对象,以延续强大的遗传基因。雄性蝴蝶能够通过信息素识别雌性蝴蝶,信息素是雌性蝴蝶发出的气味分泌物,会引起特定的反应。

通过观察,发现蝴蝶对这些来源的位置有非常准确的判断。此外,它们可以辨识出不同的香味,并感知它们的强度。蝴蝶会产生与其适应度相关的某种强度的香味,即当蝴蝶从一个位置移动到另一个位置时,它的适应度会相应地变化。当蝴蝶感觉到另一只蝴蝶在这个区域散发出更多的香味时,就会去靠近,这个阶段被称为全局搜索。另外一种情况,当蝴蝶不能感知大于它自己的香味时,它会随机移动,这个阶段称为局部搜索。

本项目通过BOA蝴蝶优化算法优化卷积神经网络回归模型。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4 .1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4 .2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6. 构建BOA蝴蝶优化算法优化 CNN回归模型

主要使用BOA蝴蝶优化算法优化CNN回归算法,用于目标回归。

6. 1 BOA蝴蝶优化算法寻找最优参数值

最优参数:

6. 2 最优参数值构建模型

|------------|--------------|--------------------|
| 编号 | 模型名称 | 参数 |
| 1 | CNN回归模型 | units=best_units |
| 2 | CNN回归模型 | epochs=best_epochs |

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7 . 模型评估

7.1评估指标及结果

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

|--------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| CNN回归模型 | R方 | 0.9134 |
| CNN回归模型 | 均方误差 | 3682.4724 |
| CNN回归模型 | 解释方差分 | 0.9136 |
| CNN回归模型 | 绝对误差 | 48.0949 |

从上表可以看出,R方分值为0.9134,说明模型效果比较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。

8. 结论与展望

综上所述,本文采用了BOA蝴蝶优化算法寻找CNN回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1yRDmWIxrzF4hUjrKNisK5g 
提取码:cht3
相关推荐
喜欢猪猪8 分钟前
Java技术专家视角解读:SQL优化与批处理在大数据处理中的应用及原理
android·python·adb
海绵波波1079 分钟前
flask后端开发(1):第一个Flask项目
后端·python·flask
林的快手15 分钟前
209.长度最小的子数组
java·数据结构·数据库·python·算法·leetcode
千天夜24 分钟前
多源多点路径规划:基于启发式动态生成树算法的实现
算法·机器学习·动态规划
从以前29 分钟前
准备考试:解决大学入学考试问题
数据结构·python·算法
Ven%1 小时前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
枫欢1 小时前
将现有环境192.168.1.100中的svn迁移至新服务器192.168.1.4;
服务器·python·svn
Anlici1 小时前
模型训练与数据分析
人工智能·机器学习
测试杂货铺1 小时前
UI自动化测试实战实例
自动化测试·软件测试·python·selenium·测试工具·测试用例·pytest
余~~185381628002 小时前
NFC 碰一碰发视频源码搭建技术详解,支持OEM
开发语言·人工智能·python·音视频