网上传言说14届最难,实际做下来感觉确实是这样的
本试题,需要将矩阵键盘短接,J3的555定时器输出口与P34短接
1.比赛题目
2.编程的大致思路
- 首先,完成基础代码与数码管的不同窗口,定义大部分要用到的变量,并测试每个窗口是否显示正常
- 然后,添加外设模块,并逐个测试模块在不同窗口下的显示效果
- 接着,进行按键的定义和数值处理函数的优化,将逻辑功能整体实现清晰
- 最后,对杂七杂八的led等部分进行设置,测试各个功能是否正常
3.编程心得
- 555定时器,除了要短接引脚,还要用RB3调节频率的数值
- 光敏电阻数字跳动太大:加1ms延时,加中断刷新,加最后一步等待应答,加临时变量判断数据正确再写入
- ds18b20,注意你采用的是不是三位数进行记录
- ds1302,最好用中断,每隔1s提取一遍时间到变量中,再用数码管显示
- 对于刷新频率为1s为单位的变量,可以直接读取ds1302的秒位,判断是否达到1s的整数倍
- 程序必须要有一个50us的中断处理,有了50us其他的刷新很好确定
- 对于led的操作。当led的变化有规律时------建立数组存放led的状态。当led没有规律时------一定要学会位运算,直接对变量value_led进行位操作,然后利用中断传入led处理函数
- 对于io编程模式,要注意对锁存器常关闭。同时采用先赋值P0端口,再打开锁存器方式,这样有效防止数据冲突。
- 所有的外设,除了555以外,都可以设置一个刷新的标志变量,可以提升系统运行效率
4.代码参考
4.1 头文件
onewire.h ds1302.h iic.h
和上一篇博客一样,和15届官方发的没有区别。为了节省篇幅这里不放出,可以参考上一篇文章,基本没有变动
basecode.h
cpp
#ifndef __BASECODE_H__
#define __BASECODE_H__
void select_HC573 ( unsigned char channal );
void state_SMG ( unsigned char pos_SMG , unsigned char value_SMG );
void state_SMG_all ( unsigned char value_SMG_all );
void state_relay ( unsigned char value_relay );
void state_led ( unsigned char value_led );
void init_sys ();
void init_ds1302 ();
void init_temperature ();
#endif
4.2 底层文件
onewire.c ds1302.c iic.c 和常规一样,也和上一篇博客一样
basecode.c
cpp
#include <ds1302.h>
#include <onewire.h>
#include <reg52.h>
#include <intrins.h>
//锁存器通道选择函数
void select_HC573 ( unsigned char channal )
{
switch ( channal )
{
case 4:
P2 = ( P2 & 0x1f ) | 0x80;
break;
case 5:
P2 = ( P2 & 0x1f ) | 0xa0;
break;
case 6:
P2 = ( P2 & 0x1f ) | 0xc0;
break;
case 7:
P2 = ( P2 & 0x1f ) | 0xe0;
break;
case 0:
P2 = ( P2 & 0x1f ) | 0x00;
break;
}
}
//单位数码管显示函数
void state_SMG ( unsigned char pos_SMG , unsigned char value_SMG )
{
select_HC573 ( 0 );
P0 = 0x01 << pos_SMG;
select_HC573( 6 );
select_HC573 ( 0 );
P0 = value_SMG;
select_HC573( 7 );
select_HC573 ( 0 );
}
//全位数码管静态显示
void state_SMG_all ( unsigned char value_SMG_all )
{
select_HC573 ( 0 );
P0 = 0xff;
select_HC573( 6 );
select_HC573 ( 0 );
P0 = value_SMG_all;
select_HC573( 7 );
select_HC573 ( 0 );
}
//led灯光控制函数
void state_led ( unsigned char value_led )
{
select_HC573 ( 0 );
P0 = 0xff;
select_HC573 ( 4 );
P0 = value_led;
select_HC573 ( 4 );
select_HC573 ( 0 );
}
//初始化系统,关闭继电器和蜂鸣器
void init_sys ()
{
select_HC573 ( 0 );
P0 = 0xff;
select_HC573 ( 4 );
select_HC573 ( 0 );
P0 = 0x00;
select_HC573 ( 5 );
select_HC573 ( 0 );
}
void init_temperature ()
{
unsigned char LSB,MSB;
init_ds18b20();
Write_DS18B20(0xcc);
Write_DS18B20(0x44);
do{
init_ds18b20();
Write_DS18B20(0xcc);
Write_DS18B20(0xbe);
LSB = Read_DS18B20();
MSB = Read_DS18B20();
MSB = ( MSB << 4 ) | ( LSB >> 4 );
}while ( MSB == 85 );
}
4.3主函数文件
cpp
#include <reg52.h>
#include <intrins.h>
#include "onewire.h"
#include "iic.h"
#include "ds1302.h"
#include "basecode.h"
sfr P4 = 0xc0;
sfr AUXR = 0x8e;
sbit C1 = P4^4;
sbit C2 = P4^2;
sbit H1 = P3^3;
sbit H2 = P3^2;
unsigned char code duanma[20] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,
0x88,0x83,0xc6,0xc0,0x86,0x8e,0xbf,0x7f,0x89,0x8c};
unsigned char code duanma_dot[16]={ 0x40 , 0x79 , 0x24 , 0x30 , 0x19 , 0x12 , 0x02 , 0x78 ,0x00 , 0x10 };
unsigned char code Write_address [7] = { 0x80 , 0x82 , 0x84 , 0x86 , 0x88 , 0x8a , 0x8c};
unsigned char code Read_address [7] = { 0x81 , 0x83 , 0x85 , 0x87 , 0x89 , 0x8b , 0x8d };
//2022year 3month 31day 5 23 59 50
unsigned char date_ds1302 [7] = { 0x50 , 0x50 , 0x23 , 0x31 , 0x03 , 0x05 , 0x22 };
unsigned int humidity = 0;
unsigned char value_led = 0xff;
unsigned char trg_count = 0;
unsigned char trg_time_hour = 0x00;
unsigned char trg_time_min = 0x00;
unsigned char trg_time_second = 0x00;
unsigned int max_temperature = 0;
unsigned int average_temperature = 0;
unsigned int old_temperature = 0;
unsigned int max_humidity = 0;
unsigned int average_humidity = 0;
unsigned int old_humidity = 0;
unsigned char SMG_flag = 1;
void flash_SMG ();
void rd1running ();
void flash_date ();
void valuerunning ();
void keyrunning ();
void Delay1ms() //@12.000MHz
{
unsigned char i, j;
i = 12;
j = 169;
do
{
while (--j);
} while (--i);
}
bit flash_rd1 = 0;
unsigned char rd1_value = 0;
void rd1running()
{
unsigned char tmp = 0;
if ( flash_rd1 == 1 )
{
I2CStart();
I2CSendByte(0x90);
I2CWaitAck();
I2CSendByte(0x01);
I2CWaitAck();
I2CStop();
Delay1ms();
I2CStart();
I2CSendByte(0x91);
I2CWaitAck();
tmp = I2CReceiveByte();
I2CWaitAck();
I2CSendAck(1);
I2CStop();
flash_rd1 = 0;
}
if ( tmp<220 && tmp>0 )
{
rd1_value = tmp;
}
}
void Delay700ms() //@12.000MHz
{
unsigned char i, j, k;
_nop_();
_nop_();
i = 32;
j = 236;
k = 16;
do
{
do
{
while (--k);
} while (--j);
rd1running ();
flash_date ();
valuerunning ();
keyrunning ();
} while (--i);
}
bit flash_ds18b20 = 0;
unsigned int temperature = 0;
unsigned int set_temperature = 300;
void flash_temperature ()
{
if ( flash_ds18b20 == 1 )
{
unsigned char LSB,MSB;
old_temperature = temperature;
init_ds18b20();
Write_DS18B20(0xcc);
Write_DS18B20(0x44);
Delay700ms();
init_ds18b20();
Write_DS18B20(0xcc);
Write_DS18B20(0xbe);
LSB = Read_DS18B20();
MSB = Read_DS18B20();
temperature = MSB;
temperature = ( temperature << 8 ) | LSB;
temperature = (temperature >> 4)*10 + (LSB & 0x0f)*0.625;
flash_ds18b20 = 0;
}
}
void init_ds1302 ()
{
unsigned char i;
Write_Ds1302_Byte ( 0x8e , 0x00 );
for ( i=0 ; i<7 ; i++ )
{
Write_Ds1302_Byte ( Write_address[i] , date_ds1302[i] );
}
Write_Ds1302_Byte ( 0x8e , 0x80 );
}
bit flash_ds1302 = 0;
void flash_date()
{
if ( flash_ds1302 == 1 )
{
unsigned char i;
for ( i=0 ; i<7 ; i++ )
{
date_ds1302[i] = Read_Ds1302_Byte ( Read_address[i] );
}
flash_ds1302 = 0;
}
}
//==============================================================================
void init_timer01 ()
{
AUXR &= 0xBF; //定时器时钟12T模式
TMOD = 0x06; //设置定时器模式
TL1 = 0xCE; //设置定时初值
TH1 = 0xFF; //设置定时初值
TF1 = 0; //清除TF1标志
TR1 = 1; //定时器1开始计时
TL0 = 0xFF; //设置定时初值
TH0 = 0xFF; //设置定时初值
TF0 = 0; //清除TF0标志
TR0 = 1; //定时器0开始计时
EA = 1;
ET0 = 1;
ET1 = 1;
}
unsigned int count_timer0 = 0;
void timer0_service () interrupt 1
{
count_timer0 ++;
}
//=============================================================================
bit flag_100ms = 0;
unsigned int count_fre = 0;
unsigned char count_50us = 0;
unsigned char count_5ms = 0;
unsigned char flash_count = 0;//数码管刷新位
unsigned char date_hour;
unsigned char date_min;
unsigned char date_second;
void timer1_service () interrupt 3
{
if ( ++count_50us == 200 )
{
flash_rd1 = 1;
count_50us = 0;
}
if ( count_50us % 40 == 0 )
{
if ( SMG_flag == 1 )//窗口1
{
if ( ++flash_count == 9 )
{
flash_count = 0;
}
}
else if ( SMG_flag == 2 )//窗口2
{
if ( ++flash_count > 7 )
{
flash_count = 0;
}
}
else if ( SMG_flag == 3 )//窗口3
{
if ( ++flash_count > 7 )
{
flash_count = 0;
}
}
else if ( SMG_flag == 4 )//窗口4
{
if ( ++flash_count == 9 )
{
flash_count = 0;
}
}
else if ( SMG_flag == 5 )//窗口5
{
if ( ++flash_count > 3 )
{
flash_count = 0;
}
}
else if ( SMG_flag == 6 )//窗口6
{
if ( ++flash_count > 6 )
{
flash_count = 0;
}
}
flash_SMG (); //刷新数码管一位
}
if ( count_50us % 100 == 0 )
{
count_5ms++;
if ( count_5ms == 200 )
{
count_5ms = 0;
count_fre = count_timer0;
count_timer0 = 0;
date_hour = date_ds1302[2]; //时间提取出来显示,数码管才不会闪烁
date_min = date_ds1302[1];
date_second = date_ds1302[0];
}
if ( count_5ms % 20 == 0 )
{
flag_100ms = ~flag_100ms;
}
}
if ( count_50us % 50 == 0 )
{
flash_ds18b20 = 1;
state_led ( value_led );
}
if ( count_50us % 40 == 0 )
{
flash_ds1302 = 1;
}
}
bit rd1_3s = 0;
unsigned char save_SMG_flag = 1;
void valuerunning ()
{
if ( count_fre >= 200 && count_fre <= 2000 )
{
value_led |= 0x10;
old_humidity = humidity;
humidity = count_fre /22.5*10;
if ( max_humidity < humidity )
{
max_humidity = humidity;
}
average_humidity = (average_humidity + humidity)/2;
}
else
{
humidity = 0;
value_led &= 0xef;
}
if ( temperature != 0 )
{
if ( max_temperature < temperature && temperature < 999 )
{
max_temperature = temperature;
}
average_temperature = (average_temperature + temperature)/2;
}
if ( rd1_value < 90 && rd1_3s == 0 )
{
trg_count ++;
trg_time_hour = date_ds1302[2];
trg_time_min = date_ds1302[1];
trg_time_second = date_ds1302[0];
save_SMG_flag = SMG_flag;
}
if ( trg_count != 0 )
{
if ( date_ds1302[0] - trg_time_second <= 0x03 )
{
rd1_3s = 1;
SMG_flag = 6;
}
else
{
if ( rd1_3s == 1 )
{
SMG_flag = save_SMG_flag;
}
rd1_3s = 0;
}
}
if ( SMG_flag == 1 )
{
value_led = ( value_led | 0x07 ) & 0xfe;
}
else if ( SMG_flag == 2 || SMG_flag == 3 || SMG_flag == 4 )
{
value_led = ( value_led | 0x07 ) & 0xfd;
}
else if ( SMG_flag == 6 )
{
value_led = ( value_led | 0x07 ) & 0xfb;
}
else
{
value_led = ( value_led | 0x07 ) ;
}
if ( temperature > set_temperature )
{
if ( flag_100ms == 0 )
{
value_led &= 0xf7;
}
else
{
value_led |= 0x08;
}
}
else
{
value_led |= 0x08;
}
if ( trg_count >1 && temperature > old_temperature && humidity > old_humidity )
{
value_led &= 0xbf;
}
else
{
value_led |= 0x40;
}
}
void Delay4ms() //@12.000MHz
{
unsigned char i, j;
i = 47;
j = 174;
do
{
while (--j);
} while (--i);
}
bit key9_2s = 0;
bit flag_clear = 0;
unsigned char key9_time = 0x00;
void keyrunning ()
{
C1 = 0;
C2 = H1 = H2 = 1;
if ( H1 == 0 )
{
Delay4ms();
if ( H1 == 0 )//S4
{
switch ( SMG_flag )
{
case 1:
SMG_flag = 2;
break;
case 2:case 3:case 4:
SMG_flag = 5;
break;
case 5:
SMG_flag = 1;
break;
}
while ( H1 == 0 );
}
}
else if ( H2 == 0 )
{
Delay4ms();
if ( H2 == 0 )//S5
{
if ( SMG_flag != 1 )
{
switch ( SMG_flag )
{
case 2:
SMG_flag = 3;
break;
case 3:
SMG_flag = 4;
break;
case 4:
SMG_flag = 2;
break;
}
}
while ( H2 == 0 );
}
}
C2 = 0;
C1 = H1 = H2 = 1;
if ( H1 == 0 )
{
Delay4ms();
if ( H1 == 0 )//S8
{
if ( SMG_flag == 5 )
{
set_temperature += 10;
if ( set_temperature == 1000 )
{
set_temperature = 990;
}
}
while ( H1 == 0 );
}
}
else if ( H2 == 0 )
{
Delay4ms();
if ( H2 == 0 )//S9
{
if ( SMG_flag == 5 )
{
set_temperature -= 10;
if ( set_temperature > 990 )
{
set_temperature = 0;
}
}
while ( H2 == 0 )
{
if ( SMG_flag == 4 && key9_2s == 0 )
{
key9_2s = 1;
key9_time = date_ds1302[0];
}
if ( date_ds1302[0] - key9_time > 0x02 )
{
key9_2s = 0;
flag_clear = 1;
break;
}
}
while ( H2 == 0 );
if ( flag_clear == 1 )
{
trg_count = 0;
trg_time_hour = 0;
trg_time_min = 0;
trg_time_second = 0;
flag_clear = 0;
}
}
}
}
void flash_SMG ()
{
state_SMG_all ( 0xff );
if ( SMG_flag == 1 )
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[date_hour/16] );
break;
case 1 :
state_SMG ( 1 , duanma[date_hour%16] );
break;
case 2 :
state_SMG ( 2 , duanma[16] );
break;
case 3 :
state_SMG ( 3 , duanma[date_min/16] );
break;
case 4 :
state_SMG ( 4 , duanma[date_min%16] );
break;
case 5 :
state_SMG ( 5 , duanma[16] );
break;
case 6 :
state_SMG ( 6 , duanma[date_second/16] );
break;
case 7 :
state_SMG ( 7 , duanma[date_second%16] );
break;
case 8 :
state_SMG_all ( 0xff );
break;
}
}
else if ( SMG_flag == 2 )
{
if ( trg_count == 0 )
{
state_SMG ( 0 , duanma[12] );
}
else
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[12] );
break;
case 1 :
state_SMG ( 2 , duanma[max_temperature/100] );
break;
case 2 :
state_SMG ( 3 , duanma[max_temperature/10%10] );
break;
case 3 :
state_SMG ( 4 , duanma[16] );
break;
case 4 :
state_SMG ( 5 , duanma[average_temperature/100] );
break;
case 5 :
state_SMG ( 6 , duanma_dot[average_temperature/10%10] );
break;
case 6 :
state_SMG ( 7 , duanma[average_temperature%10] );
break;
case 7 :
state_SMG_all ( 0xff );
break;
}
}
}
else if ( SMG_flag == 3 )
{
if ( trg_count == 0 )
{
state_SMG ( 0 , duanma[18] );
}
else
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[18] );
break;
case 1 :
state_SMG ( 2 , duanma[max_humidity/100] );
break;
case 2 :
state_SMG ( 3 , duanma[max_humidity/10%10] );
break;
case 3 :
state_SMG ( 4 , duanma[16] );
break;
case 4 :
state_SMG ( 5 , duanma[average_humidity/100] );
break;
case 5 :
state_SMG ( 6 , duanma_dot[average_humidity/10%10] );
break;
case 6 :
state_SMG ( 7 , duanma[average_humidity%10] );
break;
case 7 :
state_SMG_all ( 0xff );
break;
}
}
}
else if ( SMG_flag == 4 )
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[15] );
break;
case 1 :
state_SMG ( 1 , duanma[trg_count/10] );
break;
case 2 :
state_SMG ( 2 , duanma[trg_count%10] );
break;
case 3 :
if ( trg_count != 0 )
{
state_SMG ( 3, duanma[trg_time_hour/16] );
}
else
{
state_SMG ( 3, 0xff );
}
break;
case 4 :
if ( trg_count != 0 )
{
state_SMG ( 4 , duanma[trg_time_hour%16] );
}
else
{
state_SMG ( 4, 0xff );
}
break;
case 5 :
if ( trg_count != 0 )
{
state_SMG ( 5 , duanma[16] );
}
else
{
state_SMG ( 5, 0xff );
}
break;
case 6 :
if ( trg_count != 0 )
{
state_SMG ( 6 , duanma[trg_time_min/16] );
}
else
{
state_SMG ( 6, 0xff );
}
break;
case 7 :
if ( trg_count != 0 )
{
state_SMG ( 7 , duanma[trg_time_min%16] );
}
else
{
state_SMG ( 7, 0xff );
}
break;
case 8 :
// state_SMG_all ( 0xff );
break;
}
}
else if ( SMG_flag == 5 )
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[15] );
break;
case 1 :
state_SMG ( 6 , duanma[set_temperature/100] );
break;
case 2 :
state_SMG ( 7 , duanma[set_temperature/10%10] );
break;
case 3 :
state_SMG_all ( 0xff );
break;
}
}
else if ( SMG_flag == 6 )
{
switch ( flash_count )
{
case 0 :
state_SMG ( 0 , duanma[14] );
break;
case 1 :
if ( temperature == 0 )
{
state_SMG ( 3 , duanma[10] );
}
else
{
state_SMG ( 3 , duanma[temperature/100] );
}
break;
case 2 :
state_SMG ( 4 , duanma[temperature/10%10] );
break;
case 3 :
state_SMG ( 5 , duanma[16] );
break;
case 4 :
if ( humidity == 0 )
{
state_SMG ( 6 , duanma[10] );
}
else
{
state_SMG ( 6 , duanma[humidity/100] );
}
break;
case 5 :
if ( humidity == 0 )
{
state_SMG ( 7 , duanma[10] );
}
else
{
state_SMG ( 7 , duanma[humidity/10%10] );
}
break;
case 6 :
state_SMG_all ( 0xff );
break;
}
}
}
void main ()
{
init_sys();
init_timer01 ();
init_ds1302 ();
init_temperature ();
state_led ( 0xff );
while ( 1 )
{
keyrunning ();
rd1running ();
flash_date ();
valuerunning ();
flash_temperature ();
}
}