排序算法之计数排序

目录


一、简介

算法 平均时间复杂度 最好时间复杂度 最坏时间复杂度 空间复杂度 排序方式 稳定性
计数排序 O(n+k ) O(n+k) O(n+k) O(k) Out-place 稳定

稳定:如果A原本在B前面,而A=B,排序之后A仍然在B的前面;

不稳定:如果A原本在B的前面,而A=B,排序之后A可能会出现在B的后面;

时间复杂度: 描述一个算法执行所耗费的时间;

空间复杂度:描述一个算法执行所需内存的大小;

n:数据规模;

k:"桶"的个数;

In-place:占用常数内存,不占用额外内存;

Out-place:占用额外内存。

计数排序,又叫非比较排序。顾名思义,该算法不是通过比较数据的大小来进行排序的,而是通过统计数组中相同元素出现的次数,然后通过统计的结果将序列回收到原来的序列中。

核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法步驟:

(1)找出待排序的数组中最大和最小的元素

(2)统计数组中每个值为i的元素出现的次数,存入数组C的第 i 项

(3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)

(4)反向填充目标数组:将每个元素i放在新数组的第C( i )项,每放一个元素就将C( i )减去1


二、代码实现

java 复制代码
public class CountingSort {
    public static void countingSort(int[] arr) {
        int len = arr.length;
        if (len < 2) return;
        int minVal = arr[0], maxVal = arr[0];
        for (int i = 1; i < len; i++) {
            if (arr[i] < minVal) {
                minVal = arr[i];
            } else if (arr[i] > maxVal) {
                maxVal = arr[i];
            }
        }

        int[] countArr = new int[maxVal - minVal + 1];
        for (int val : arr) {
            countArr[val - minVal]++;
        }
        for (int arrIdx = 0, countIdx = 0; countIdx < countArr.length; countIdx++) {
            while (countArr[countIdx]-- > 0) {
                arr[arrIdx++] = minVal + countIdx;
            }
        }
    }

    public static void countingSort2(int[] arr) {
        int len = arr.length;
        if (len < 2) return;
        int minVal = arr[0], maxVal = arr[0];
        for (int i = 1; i < len; i++) {
            if (arr[i] < minVal) {
                minVal = arr[i];
            } else if (arr[i] > maxVal) {
                maxVal = arr[i];
            }
        }

        int[] countArr = new int[maxVal - minVal + 1];
        for (int val : arr) {
            countArr[val - minVal]++;
        }
        for (int countIdx = countArr.length - 1, arrIdx = 0; countIdx >= 0; countIdx--) {
            while (countArr[countIdx]-- > 0) {
                arr[arrIdx++] = minVal + countIdx;
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 11, 15, 50, 7, 65, 3, 99, 0};
        System.out.println("---排序前:  " + Arrays.toString(arr));
        countingSort(arr);
        System.out.println("计数排序从小到大:  " + Arrays.toString(arr));
        countingSort2(arr);
        System.out.println("计数排序从大到小:  " + Arrays.toString(arr));
    }
}

三、应用场景

  • 适用于范围较小的整数排序:计数排序适用于对范围较小的整数进行排序,因为它的时间复杂度与输入数据的范围大小线性相关,而与数据规模无关。
  • 适用于重复值较多的情况:如果输入数据中存在大量重复值,计数排序可以有效地减少比较次数,提高排序效率。
  • 稳定性:计数排序是一种稳定的排序算法,可以保持相同元素的相对顺序不变。
  • 适用于非负整数排序:计数排序要求输入数据必须是非负整数,且适用于整数排序,不适用于字符串等其他类型的数据。
  • 适用于辅助排序算法:计数排序可以作为辅助排序算法,用于优化其他排序算法的性能,例如基数排序。

参考链接:
十大经典排序算法(Java实现)

相关推荐
小刘的AI小站几秒前
leetcode hot100 二叉搜索树
算法·leetcode
自信的小螺丝钉1 分钟前
Leetcode 876. 链表的中间结点 快慢指针
算法·leetcode·链表·指针
红豆怪怪2 分钟前
[LeetCode 热题 100] 32. 最长有效括号
数据结构·python·算法·leetcode·动态规划·代理模式
愚润求学8 分钟前
【贪心算法】day6
c++·算法·leetcode·贪心算法
AI 嗯啦19 分钟前
计算机的排序方法
数据结构·算法·排序算法
小薛博客27 分钟前
22、Jenkins容器化部署Java应用
java·运维·jenkins
西贝爱学习31 分钟前
如何在 IntelliJ IDEA 中进行全局替换某个字段(或文本)
java·ide·intellij-idea
l12345sy32 分钟前
Day23_【机器学习—聚类算法—K-Means聚类 及评估指标SSE、SC、CH】
算法·机器学习·kmeans·聚类·sse·sc·ch
南部余额34 分钟前
Spring 基于注解的自动化事务
java·spring·自动化
alf_cee35 分钟前
通过Idea 阿里插件快速部署java jar包
java·ide·intellij-idea