排序算法之计数排序

目录


一、简介

算法 平均时间复杂度 最好时间复杂度 最坏时间复杂度 空间复杂度 排序方式 稳定性
计数排序 O(n+k ) O(n+k) O(n+k) O(k) Out-place 稳定

稳定:如果A原本在B前面,而A=B,排序之后A仍然在B的前面;

不稳定:如果A原本在B的前面,而A=B,排序之后A可能会出现在B的后面;

时间复杂度: 描述一个算法执行所耗费的时间;

空间复杂度:描述一个算法执行所需内存的大小;

n:数据规模;

k:"桶"的个数;

In-place:占用常数内存,不占用额外内存;

Out-place:占用额外内存。

计数排序,又叫非比较排序。顾名思义,该算法不是通过比较数据的大小来进行排序的,而是通过统计数组中相同元素出现的次数,然后通过统计的结果将序列回收到原来的序列中。

核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法步驟:

(1)找出待排序的数组中最大和最小的元素

(2)统计数组中每个值为i的元素出现的次数,存入数组C的第 i 项

(3)对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)

(4)反向填充目标数组:将每个元素i放在新数组的第C( i )项,每放一个元素就将C( i )减去1


二、代码实现

java 复制代码
public class CountingSort {
    public static void countingSort(int[] arr) {
        int len = arr.length;
        if (len < 2) return;
        int minVal = arr[0], maxVal = arr[0];
        for (int i = 1; i < len; i++) {
            if (arr[i] < minVal) {
                minVal = arr[i];
            } else if (arr[i] > maxVal) {
                maxVal = arr[i];
            }
        }

        int[] countArr = new int[maxVal - minVal + 1];
        for (int val : arr) {
            countArr[val - minVal]++;
        }
        for (int arrIdx = 0, countIdx = 0; countIdx < countArr.length; countIdx++) {
            while (countArr[countIdx]-- > 0) {
                arr[arrIdx++] = minVal + countIdx;
            }
        }
    }

    public static void countingSort2(int[] arr) {
        int len = arr.length;
        if (len < 2) return;
        int minVal = arr[0], maxVal = arr[0];
        for (int i = 1; i < len; i++) {
            if (arr[i] < minVal) {
                minVal = arr[i];
            } else if (arr[i] > maxVal) {
                maxVal = arr[i];
            }
        }

        int[] countArr = new int[maxVal - minVal + 1];
        for (int val : arr) {
            countArr[val - minVal]++;
        }
        for (int countIdx = countArr.length - 1, arrIdx = 0; countIdx >= 0; countIdx--) {
            while (countArr[countIdx]-- > 0) {
                arr[arrIdx++] = minVal + countIdx;
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 11, 15, 50, 7, 65, 3, 99, 0};
        System.out.println("---排序前:  " + Arrays.toString(arr));
        countingSort(arr);
        System.out.println("计数排序从小到大:  " + Arrays.toString(arr));
        countingSort2(arr);
        System.out.println("计数排序从大到小:  " + Arrays.toString(arr));
    }
}

三、应用场景

  • 适用于范围较小的整数排序:计数排序适用于对范围较小的整数进行排序,因为它的时间复杂度与输入数据的范围大小线性相关,而与数据规模无关。
  • 适用于重复值较多的情况:如果输入数据中存在大量重复值,计数排序可以有效地减少比较次数,提高排序效率。
  • 稳定性:计数排序是一种稳定的排序算法,可以保持相同元素的相对顺序不变。
  • 适用于非负整数排序:计数排序要求输入数据必须是非负整数,且适用于整数排序,不适用于字符串等其他类型的数据。
  • 适用于辅助排序算法:计数排序可以作为辅助排序算法,用于优化其他排序算法的性能,例如基数排序。

参考链接:
十大经典排序算法(Java实现)

相关推荐
TracyCoder1239 分钟前
LeetCode Hot100(27/100)——94. 二叉树的中序遍历
算法·leetcode
九.九17 分钟前
CANN HCOMM 底层机制深度解析:集合通信算法实现、RoCE 网络协议栈优化与多级同步原语
网络·网络协议·算法
摇滚侠22 分钟前
macbook shell 客户端推荐 Electerm macbook 版本下载链接
java·开发语言
程序员布吉岛24 分钟前
Java 后端定时任务怎么选:@Scheduled、Quartz 还是 XXL-Job?(对比 + 避坑 + 选型)
java·开发语言
C++ 老炮儿的技术栈26 分钟前
Qt Creator中不写代如何设置 QLabel的颜色
c语言·开发语言·c++·qt·算法
知无不研28 分钟前
lambda表达式的原理和由来
java·开发语言·c++·lambda表达式
逍遥德29 分钟前
Sring事务详解之02.如何使用编程式事务?
java·服务器·数据库·后端·sql·spring
笨蛋不要掉眼泪29 分钟前
Redis哨兵机制全解析:原理、配置与实战故障转移演示
java·数据库·redis·缓存·bootstrap
子春一35 分钟前
Flutter for OpenHarmony:构建一个 Flutter 数字消消乐游戏,深入解析网格状态管理、合并算法与重力系统
算法·flutter·游戏
Coder_Boy_44 分钟前
基于SpringAI的在线考试系统-整体架构优化设计方案
java·数据库·人工智能·spring boot·架构·ddd