飞桨Ai(二)paddle使用CPU版本可以正常识别,切换为GPU版本时无法识别结果

一、问题描述:

  • 刚开始用paddle的CPU版本,对训练好的模型进行推理,正常识别出想要的结果
  • 后来尝试使用paddle的GPU版本,然后发现识别出来是空的

二、系统思路:

  • 最终系统环境如下:

    系统:win10
    显卡:GeForce GT 730
    GPU计算能力:3.5
    Python:3.10
    cuda:10.2.0
    cudnn:7.6.5
    paddlepaddle:2.4.2

  • 总体思路:根据GPU计算能力和GPU型号,查找对应的CUDA版本,并且通过尝试降cuda版本和降paddle版本使其运行

三、解决过程

1、使用CUDA11.2、CUDNN8.2.1、paddle-gpu2.6.1的版本(×)

  • 在网上查找资料,安装了如上的对应版本,报错如下
shell 复制代码
(base) D:\Downloads>python -c "import paddle; paddle.utils.run_check()"
Running verify PaddlePaddle program ...
I0831 10:35:55.205960  7352 interpretercore.cc:237] New Executor is Running.
W0831 10:35:55.205960  7352 gpu_resources.cc:96] The GPU architecture in your current machine is Pascal, which is not compatible with Paddle installation with arch: 70 75 80 86 , it is recommended to install the corresponding wheel package according to the installation information on the official Paddle website.
W0831 10:35:55.206962  7352 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 3.5, Driver API Version: 11.4, Runtime API Version: 11.2
W0831 10:35:55.221961  7352 gpu_resources.cc:149] device: 0, cuDNN Version: 8.2.
I0831 10:35:56.037954  7352 interpreter_util.cc:518] Standalone Executor is Used.
PaddlePaddle works well on 1 GPU.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
  • 说是成功了,但其实程序跑起来,gpu根本没用上!可以用下面这段代码测试。
python 复制代码
from paddlenlp import Taskflow
from pprint import pprint

# 定义抽取目标的schema
# 这里我们定义了一个schema,用于抽取人物和他们所在的组织
schema = [{"人物": ["姓名"]}, "组织"]

# 创建UIE任务流实例
# 这里我们使用预训练的UIE模型,指定schema,并传入待抽取的文本
ie = Taskflow('information_extraction', schema=schema)

# 待抽取的文本
text = "李彦宏是百度公司的创始人之一。"

# 执行信息抽取
results = ie(text)

# 打印抽取结果
pprint(results)
  • 如果显示结果如下,则为成功,否则就有问题

2、降paddle-gpu的版本(×)

3、同时降CUDA版本和CUDNN版本(✔)

  • 虽然根据官方文档,计算能力为3.5的GPU是可以支持11.2的,但实际上计算能力为3.5的GPU还是太老了,建议稍微降点版本
  • 经过一遍遍尝试,最终采用CUDA 10.2、CUDNN 7.6.5、paddle-gpu 2.4.2的版本

四、解决方案

1、卸载原CUDA(可选)

  • 在搜索栏中直接搜索 控制面板-》程序-》卸载程序,找到如下红框中下错版本的CUDA相关程序进行删除

2、去官网下载需要的CUDA和CUDNN版本

  • 注意:如果C盘空间足够,建议一路下一步,如果安装到别的盘可能会出现一些问题,害,都是教训

3、更换paddle-gpu的版本

  • 从最新的能够支持你电脑的CUDA版本逐步往后试,注意CPU版本的和GPU版本的不兼容,下载前把CPU的先删了

4、测试结果

  • 测试结果显示如下,说明安装成功

参考:

相关推荐
996终结者31 分钟前
深度学习从入门到精通(一):深度学习的分类
人工智能·深度学习·分类
长桥夜波32 分钟前
【第二十一周】机器学习周报
人工智能·机器学习
GIOTTO情32 分钟前
舆情处置技术深度解析:Infoseek 字节探索的 AI 闭环架构与实现逻辑
人工智能·架构
KG_LLM图谱增强大模型1 小时前
突破AI助手成本壁垒:知识图谱思维架构让小模型实现大性能
人工智能·架构·大模型·知识图谱·graphrag
喜欢吃豆1 小时前
[特殊字符] 深入解构 Assistants API:从“黑盒”抽象到“显式”控制的架构演进与终极指南
网络·人工智能·自然语言处理·架构·大模型
深圳南柯电子1 小时前
深圳南柯电子|医疗电子EMC整改:助医疗器械安全稳定的关键环节
网络·人工智能·安全·互联网·实验室·emc
张较瘦_1 小时前
[论文阅读] AI + 职业教育 | 从框架到实践:职业院校教师人工智能素养提升的完整方案
论文阅读·人工智能
得贤招聘官2 小时前
AI 重塑招聘格局,传统招聘模式面临转型挑战
人工智能
九章云极AladdinEdu2 小时前
量子机器学习框架设计:基于Cirq的变分量子算法实现
人工智能·量子机器学习·cirq框架·变分量子算法·量子卷积·混合神经网络·参数化量子电路
平和男人杨争争2 小时前
SNN(TTFS)论文阅读——LC-TTFS
论文阅读·人工智能·神经网络·机器学习