Computer Vision-CNN

CNN(Convolutional Neural Network)

Import a question:classification

given a feature representing for images, how do we learn a model for distinguishing features from different classes?

The machine learning framework

1:prediction function to get desired output:

f(🍎)=apple

f(🍅)=tomato

f(🐮)=cow

2:The framework

here, there are two activities:

  • Training:knowing training set {(x1,y1)......(xn,yn)} estimate the prediction function f
  • Testing:knowing f ,to test x and output value y=f(x)

Neural Networks(Linear)

  • Perceptron(感知机)
  • Linear classifier-vector of weights w and a 'bias b

    This is convolution!

An example of binary classifying an image

  • Each pixel of the image would be an input, so, for a 28x28 image, we vectorize(矢量化),x=1x784

矢量化是一种将图像、图形或其他类型的数据转换为矢量格式的过程。在矢量格式中,图像和图形被表示为数学公式,而不是像素或其他离散数据点的集合。这种表示方式具有许多优点,包括:

可缩放性:矢量图形可以无限放大或缩小,而不会失去清晰度或产生锯齿状边缘。

编辑性:矢量图形可以轻松地编辑和修改,例如更改颜色、形状、大小等,而不会影响图像的质量。

交互性:矢量图形可以与其他应用程序进行交互,例如在网站上使用矢量图形可以使页面加载更快,并且可以通过CSS样式表轻松地更改图形属性。

打印质量:矢量图形具有更高的打印质量,因为它们不会失去清晰度或产生锯齿状边缘。

总之,矢量化可以提高图像和图形的质量,并使其更易于编辑、缩放和使用。

  • w is a vector of weights for each pixel: 784x1
  • b is a scalar(标量) bias per perceptron
  • result=xw +b ->(1x784)(784x1)+b->(1x1)+b

    Notice: the result of multiplying **xw** is a scalar(dot product)

Multuclass(add more perceptrons)

  • x same as above example ->x=1x784
  • W is a matrix of weights for each pixel/each perceptron
    w=784x10(assume 10-class classification)
  • b is a bias per perceptron(vector of biases)->b=1x10
  • result=xW+b=(1x784)x(784x10)+b=(1x10)+(1x10)=output vector

Bias convenience

  • create a 'fake' feature with value 1 to represent the bias
  • Add an extra weight that can vary

Then: the composition :

Outputs from one perceptron are fed into inputs of another perceptron

It's all just matrix multiplication!

Two problems

1:with all linear functions, the composition of functions is really just a single function(not complex function)

2:Linear classifiers:small change in input can cause large change in binary output=problem for composition of functions.

The thing we want:

Neural Network(Non-Linearities)

MLP(Multi-layer perceptron)

  • with enough parameters, it can approximate any function
  • images as input to neural networks(spatial correlation is local+waste of resource and we have not enough training samples)

so we import an activity: Sparse interactions

  • composition of layers will expand local to global


    Note:after such operation,the parameterization is good when input image is registered

Convolution Layer


pooling Layer:Receptive Field Size

Pooling is similar to downsampling

  • In convolution neural network, we always adopt pooling layer after a convolution layer operation.(Often using Max pooling not average pooling)
  • There are many kind of pooling layer(max/average)

Local contrast Normalization


相关推荐
Oxo Security5 分钟前
【AI安全】拆解 OWASP LLM Top 10 攻击架构图
人工智能·安全
Math_teacher_fan7 分钟前
第二篇:核心几何工具类详解
人工智能·算法
yingxiao8888 分钟前
11月海外AI应用市场:“AI轻工具”贡献最大新增;“通用型AI助手”用户留存强劲
人工智能·ai·ai应用
饭饭大王66612 分钟前
卷积神经网络的设计与优化
人工智能·神经网络·cnn
有才不一定有德27 分钟前
解密黑盒:如何追踪 AI 角色的“观点”变化?
人工智能·多智能体系统
晞微27 分钟前
ResNet18 迁移学习实战:CIFAR-10 图像分类与 CPU 优化
人工智能·分类·迁移学习
java_logo36 分钟前
Onlyoffice Documentserver Docker 容器化部署指南
运维·人工智能·docker·容器·onlyoffice·milvus·documentserver
数据猿38 分钟前
【金猿人物展】涛思数据创始人、CEO陶建辉:实现AI时代时序数据库向“数据平台”的转型
大数据·数据库·人工智能·时序数据库·涛思数据
TMT星球39 分钟前
京东健康联合京东金榜发布2025年度三大品类金榜
人工智能
oak隔壁找我43 分钟前
Spring AI Alibaba + Crawl4ai + Docker 搭建一个具有联网搜索能力的Agent
人工智能