Computer Vision-CNN

CNN(Convolutional Neural Network)

Import a question:classification

given a feature representing for images, how do we learn a model for distinguishing features from different classes?

The machine learning framework

1:prediction function to get desired output:

f(🍎)=apple

f(🍅)=tomato

f(🐮)=cow

2:The framework

here, there are two activities:

  • Training:knowing training set {(x1,y1)......(xn,yn)} estimate the prediction function f
  • Testing:knowing f ,to test x and output value y=f(x)

Neural Networks(Linear)

  • Perceptron(感知机)
  • Linear classifier-vector of weights w and a 'bias b

    This is convolution!

An example of binary classifying an image

  • Each pixel of the image would be an input, so, for a 28x28 image, we vectorize(矢量化),x=1x784

矢量化是一种将图像、图形或其他类型的数据转换为矢量格式的过程。在矢量格式中,图像和图形被表示为数学公式,而不是像素或其他离散数据点的集合。这种表示方式具有许多优点,包括:

可缩放性:矢量图形可以无限放大或缩小,而不会失去清晰度或产生锯齿状边缘。

编辑性:矢量图形可以轻松地编辑和修改,例如更改颜色、形状、大小等,而不会影响图像的质量。

交互性:矢量图形可以与其他应用程序进行交互,例如在网站上使用矢量图形可以使页面加载更快,并且可以通过CSS样式表轻松地更改图形属性。

打印质量:矢量图形具有更高的打印质量,因为它们不会失去清晰度或产生锯齿状边缘。

总之,矢量化可以提高图像和图形的质量,并使其更易于编辑、缩放和使用。

  • w is a vector of weights for each pixel: 784x1
  • b is a scalar(标量) bias per perceptron
  • result=xw +b ->(1x784)(784x1)+b->(1x1)+b

    Notice: the result of multiplying **xw** is a scalar(dot product)

Multuclass(add more perceptrons)

  • x same as above example ->x=1x784
  • W is a matrix of weights for each pixel/each perceptron
    w=784x10(assume 10-class classification)
  • b is a bias per perceptron(vector of biases)->b=1x10
  • result=xW+b=(1x784)x(784x10)+b=(1x10)+(1x10)=output vector

Bias convenience

  • create a 'fake' feature with value 1 to represent the bias
  • Add an extra weight that can vary

Then: the composition :

Outputs from one perceptron are fed into inputs of another perceptron

It's all just matrix multiplication!

Two problems

1:with all linear functions, the composition of functions is really just a single function(not complex function)

2:Linear classifiers:small change in input can cause large change in binary output=problem for composition of functions.

The thing we want:

Neural Network(Non-Linearities)

MLP(Multi-layer perceptron)

  • with enough parameters, it can approximate any function
  • images as input to neural networks(spatial correlation is local+waste of resource and we have not enough training samples)

so we import an activity: Sparse interactions

  • composition of layers will expand local to global


    Note:after such operation,the parameterization is good when input image is registered

Convolution Layer


pooling Layer:Receptive Field Size

Pooling is similar to downsampling

  • In convolution neural network, we always adopt pooling layer after a convolution layer operation.(Often using Max pooling not average pooling)
  • There are many kind of pooling layer(max/average)

Local contrast Normalization


相关推荐
美团技术团队2 分钟前
美团发布 LongCat-Image 图像生成模型,编辑能力登顶开源SOTA
人工智能
天一生水water3 分钟前
石油工程师做页岩油排采的具体流程
人工智能·智慧油田
双翌视觉5 分钟前
服务器电源外观检测智能化机器视觉解决方案
运维·服务器·人工智能·机器学习
阿恩.77015 分钟前
化学前沿:科技革新与跨学科应用
人工智能·经验分享·笔记·科技·计算机网络·数学建模
byzh_rc31 分钟前
[认知计算] 循环神经网络
人工智能·python·rnn·深度学习·神经网络·机器学习
CNRio35 分钟前
AI赋能市井烟火:科技与治理的双重革命
人工智能·科技·easyui
居然JuRan38 分钟前
一张日落照片,为什么传统数据库"看不懂"?揭秘向量数据库的魔力
人工智能
美团技术团队42 分钟前
LongCat 上线 AI 生图!精准高效,AI 创作不设限
人工智能
xixixi7777742 分钟前
NTN(神经张量网络):让AI学会“关系推理”的里程碑
网络·人工智能·神经网络·ai·大模型·ntn
测试人社区—84161 小时前
Mocking与Stubbing在单元测试中的正确使用
人工智能·git·单元测试·自动化·bug·postman