Computer Vision-CNN

CNN(Convolutional Neural Network)

Import a question:classification

given a feature representing for images, how do we learn a model for distinguishing features from different classes?

The machine learning framework

1:prediction function to get desired output:

f(🍎)=apple

f(🍅)=tomato

f(🐮)=cow

2:The framework

here, there are two activities:

  • Training:knowing training set {(x1,y1)......(xn,yn)} estimate the prediction function f
  • Testing:knowing f ,to test x and output value y=f(x)

Neural Networks(Linear)

  • Perceptron(感知机)
  • Linear classifier-vector of weights w and a 'bias b

    This is convolution!

An example of binary classifying an image

  • Each pixel of the image would be an input, so, for a 28x28 image, we vectorize(矢量化),x=1x784

矢量化是一种将图像、图形或其他类型的数据转换为矢量格式的过程。在矢量格式中,图像和图形被表示为数学公式,而不是像素或其他离散数据点的集合。这种表示方式具有许多优点,包括:

可缩放性:矢量图形可以无限放大或缩小,而不会失去清晰度或产生锯齿状边缘。

编辑性:矢量图形可以轻松地编辑和修改,例如更改颜色、形状、大小等,而不会影响图像的质量。

交互性:矢量图形可以与其他应用程序进行交互,例如在网站上使用矢量图形可以使页面加载更快,并且可以通过CSS样式表轻松地更改图形属性。

打印质量:矢量图形具有更高的打印质量,因为它们不会失去清晰度或产生锯齿状边缘。

总之,矢量化可以提高图像和图形的质量,并使其更易于编辑、缩放和使用。

  • w is a vector of weights for each pixel: 784x1
  • b is a scalar(标量) bias per perceptron
  • result=xw +b ->(1x784)(784x1)+b->(1x1)+b

    Notice: the result of multiplying **xw** is a scalar(dot product)

Multuclass(add more perceptrons)

  • x same as above example ->x=1x784
  • W is a matrix of weights for each pixel/each perceptron
    w=784x10(assume 10-class classification)
  • b is a bias per perceptron(vector of biases)->b=1x10
  • result=xW+b=(1x784)x(784x10)+b=(1x10)+(1x10)=output vector

Bias convenience

  • create a 'fake' feature with value 1 to represent the bias
  • Add an extra weight that can vary

Then: the composition :

Outputs from one perceptron are fed into inputs of another perceptron

It's all just matrix multiplication!

Two problems

1:with all linear functions, the composition of functions is really just a single function(not complex function)

2:Linear classifiers:small change in input can cause large change in binary output=problem for composition of functions.

The thing we want:

Neural Network(Non-Linearities)

MLP(Multi-layer perceptron)

  • with enough parameters, it can approximate any function
  • images as input to neural networks(spatial correlation is local+waste of resource and we have not enough training samples)

so we import an activity: Sparse interactions

  • composition of layers will expand local to global


    Note:after such operation,the parameterization is good when input image is registered

Convolution Layer


pooling Layer:Receptive Field Size

Pooling is similar to downsampling

  • In convolution neural network, we always adopt pooling layer after a convolution layer operation.(Often using Max pooling not average pooling)
  • There are many kind of pooling layer(max/average)

Local contrast Normalization


相关推荐
聚客AI37 分钟前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar43 分钟前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生1 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队1 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁3 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊4 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元4 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒4 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc