【OpenCV】告别人工目检:深度学习技术引领工业品缺陷检测新时代

目录

前言

机器视觉

缺陷检测

工业上常见缺陷检测方法


前言

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。 点击跳转到网站

机器视觉

机器视觉是使用各种工业相机,结合传感器跟电气信号实现替代传统人工,完成对象识别、计数、测量、缺陷检测、引导定位与抓取等任务。其中工业品的缺陷检测极大的依赖人工完成,特别是传统的3C制造环节,产品缺陷检测依赖于人眼睛来发现与检测,不仅费时费力还面临人员成本与工作时间等因素的制约。使用机器视觉来实现产品缺陷检测,可以节约大量时间跟人员成本,实现生产过程的自动化与流水线作业。

缺陷检测

常见得工业品缺陷主要包括划痕、脏污、缺失、凹坑、裂纹等,这些依赖人工目检(眼睛检测)的缺陷都可以通过机器视觉的缺陷检测算法来实现替代。当前工业缺陷检测算法目前主要分为两个方向,基于传统视觉的算法和基于深度学习的算法,前者主要依靠对检测目标的特征进行量化,比如颜色,形状,长宽,角度,面积等,好处是可解释性强、对样本数量没有要求、运行速度快,缺点是依赖于固定的光照成像,稍有改动就要改写程序重新部署,而且检测规则和算法跟开发者经验其主导作用。基于深度学习的缺陷检测算法刚好能弥补前者的不足之处,能够很好适应不同的光照,更好地适配同类缺陷要求,缺点是对样本数量有一定要求,对硬件配置相比传统也会有一定要求。

《OpenCV应用开发:入门、进阶与工程化实践》一书第十四 章 通过案例详细介绍基于OpenCV如何实现传统方式的缺陷检测跟基于深度学习的缺陷检测。

工业上常见缺陷检测方法

方法一:基于简单二值图像分析实现划痕提取,效果如下:

方法二:复杂背景下的图像缺陷分析,基于频域增强的方法实现缺陷检测,运行截图:

方法三:复杂背景下的图像缺陷分析,基于空域增强实现图像缺陷分析,针对复杂背景的图像,通过空域滤波增强以后实现缺陷查找,运行截图如下:

方法四:基于样品模板比对实现基于空域增强实现图像缺陷分析,通过二之分析与轮廓比对实现缺陷查找,运行截图如下:

方法五:基于深度学习UNet模型网络,实现裂纹与划痕检测,运行截图如下:

方法六:基于深度学习实例分割网络模型网络,实现细微缺陷检测,运行截图如下:

相关推荐
KuaFuAI2 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic11 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI15 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海18 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah19 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d22 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录26 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc36 分钟前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind39 分钟前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉
youcans_40 分钟前
【微软报告:多模态基础模型】(2)视觉理解
人工智能·计算机视觉·大语言模型·多模态·视觉理解