hive 不同维度聚合 grouping sets 使用详情

当结构数据表中,多列维度字段场景,
需要看不同维度聚合后的数据集时。

整体 demo sql

复制代码
select	
			if(CAST (GROUPING__ID AS INT) & 8=0, A, 'all') as A
			,if(CAST (GROUPING__ID AS INT) & 4=0, B, 'all') as B
			,C
			,D
from table_name
where dt = '${dt}'
group by
			A
			,B
			,C
			,D	
GROUPING SETS(
			(A)		
			,(B)
			,(C)	
			,(D)	
			
			,(A,B)	
			,(A,C)
			,(A,D)
			,(B,C)	
			,(B,D)	
			,(C,D)	
			
			,(A,B,C)	
			,(A,B,D)	
			,(A,C,D)	
			,(B,C,D)	
			
			,(A,B,C,D)	

下面进行sql逐步拆解分析(建议三个模块结合着看,会更快理解该语法)

1.第一模块

复制代码
select	
			-- A 的二进制为 8 ,如果 GROUPING__ID & 8=0 则取A值,否值为 all 
			if(CAST (GROUPING__ID AS INT) & 8=0, A, 'all') as A
			
			-- & 运算符使用
			--	0	1	1	1	二进制数对应的十进制数为	7
			--	1	0	0	0	二进制数对应的十进制数为	8
			--	演示 7 & 8(1表示 真 、0表示 假;真真得真,真假得假,假假得假)
			--	0	1	1	1
			--	1	0	0	0
			-----------------
			--	0	0	0	0	该二进制对应的十进制为0
			-- 则 7 & 8 =0
			
			
			-- A 的二进制为 4 ,如果 GROUPING__ID & 4=0 则取B值,否值为 all 
			,if(CAST (GROUPING__ID AS INT) & 4=0, B, 'all') as B
			,C
			,D

2.第二模块 (接着第一模块叙述)

复制代码
from table_name
where dt = '${dt}'
group by
			A
			,B
			,C
			,D
			
--	A	B	C	D	出现在 group by 后的位置
--	3	2	1	0	二进制排位(最先出现在group by 后的排二进制最高位)
--	8	4	2	1	二进制转化为十进制值

3.第三模块(接着第二模块叙述)

复制代码
GROUPING SETS(
			(A)		-- GROUPING__ID 值为 7
			,(B)	-- GROUPING__ID 值为 11
			,(C)	-- GROUPING__ID 值为 13
			,(D)	-- GROUPING__ID 值为 14
			
			,(A,B)	-- GROUPING__ID 值为 3
			,(A,C)	-- GROUPING__ID 值为 5
			,(A,D)	-- GROUPING__ID 值为 6
			,(B,C)	-- GROUPING__ID 值为 9
			,(B,D)	-- GROUPING__ID 值为 10
			,(C,D)	-- GROUPING__ID 值为 12
			
			,(A,B,C)	-- GROUPING__ID 值为 1
			,(A,B,D)	-- GROUPING__ID 值为 2
			,(A,C,D)	-- GROUPING__ID 值为 4
			,(B,C,D)	-- GROUPING__ID 值为 8
			
			,(A,B,C,D)	-- GROUPING__ID 值为 0 
)

附加测试语法

复制代码
-- 将二进制化转化为十进制
rpad(reverse(bin(cast(GROUPING__ID AS bigint))),16,'0') 
相关推荐
Light602 小时前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark
写代码的【黑咖啡】3 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
笨蛋少年派6 小时前
数据仓库系统建设:数据采集、预处理与集成
数据仓库
qq 8762239657 小时前
基于Matlab/simulink的双电机建模驱动控制仿真模型:探索纯电与混动汽车世界
数据仓库
beijingliushao12 小时前
103-Spark之Standalone环境测试
大数据·ajax·spark
beijingliushao13 小时前
102-Spark之Standalone环境安装步骤-2
大数据·分布式·spark
青云交16 小时前
Java 大视界 -- Java 大数据机器学习模型在金融风险管理体系构建与风险防范能力提升中的应用(435)
java·大数据·机器学习·spark·模型可解释性·金融风控·实时风控
番茄撒旦在上16 小时前
Hive数仓分层——国内大数据就业洞察
大数据·数据仓库·hive
yumgpkpm16 小时前
hadoop集群搭建 (超详细) 接入Impala、Hive,AI 大模型的数据底座
hive·hadoop·mysql·zookeeper·flink·kafka·hbase
励志成为糕手17 小时前
MapReduce工作流程:从MapTask到Yarn机制深度解析
大数据·hadoop·分布式·mapreduce·yarn