【数学建模】建筑工地开工问题

题目:

某公司有 6 6 6个建筑工地要开工,每个工地的位置(用平面坐标 ( a , b ) (a,b) (a,b)表示,距离单位: k m km km)及水泥日用量 d ( 单位 : t ) d(单位:t) d(单位:t)由下表给出,目前有两个临时料场位于 P ( 5 , 1 ) , Q ( 2 , 7 ) P(5,1),Q(2,7) P(5,1),Q(2,7),日储量各有 20 t 20t 20t。

工地 1 2 3 4 5 6
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5 6.5 7.75
d 3 5 4 7 6 11

研究下列问题:

1)假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从每个料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

首先我们要知道吨公里数是什么:

设运送水泥为 x x x吨,运送了 y y y公里,那么吨公里数就是 x y xy xy

所以我们可以设每次运输水泥为 x i x_i xi吨,运送了 y i y_i yi公里,那么总的吨公里数最小模型 就是
min ⁡ ∑ i ∈ N ( x i y i ) \min{\sum_{ i\in N }(x_iy_i)} min∑i∈N(xiyi)

建立供应条件模型:

设料场 i i i到工地 j j j的运输量为 X i j X_{ij} Xij

则所有料场向某工地运输量之和大于等于该工地水泥日用量 d i d_i di:
∑ j ∈ N X i j > = d i , i ∈ N \sum_{ j\in N }X_{ij} >= d_i, i\in N ∑j∈NXij>=di,i∈N

且某料场对所有工地运算量之和不得超过料场的日储量 e j e_j ej:
∑ i ∈ N X i j ≤ e j , j ∈ N \sum_{ i\in N }X_{ij} \le e_j, j\in N ∑i∈NXij≤ej,j∈N

最后建立料场和工地距离模型 :

设料场 P ( x , y ) P(x,y) P(x,y)到工地 A ( a , b ) A(a,b) A(a,b)的运输量为 d i s P A dis_{PA} disPA

则: d i s P A = ( x − a ) 2 + ( y − b ) 2 dis_{PA} = \sqrt{(x-a)^2+(y-b)^2} disPA=(x−a)2+(y−b)2

已知有6个工地和2个料场

将料场和工地距离模型和供应条件模型带入吨公里数最小模型可得:
a n s = min ⁡ ∑ i ∈ N ( X i j d i s i j ) , j = 1 , 2 ans = \min{\sum_{ i\in N }(X_{ij}dis_{ij})},j=1,2 ans=min∑i∈N(Xijdisij),j=1,2

或者
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=min∑j=1,2∑i∈N,i<=6(Xijdisij)

建模后带入已知进行LINGO求解:

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;
 x = 5,2;
 y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

解出:

bash 复制代码
Objective value:                              136.2275
                       K( 1, 1)        3.000000            0.000000
                       K( 1, 2)        0.000000            3.852207
                       K( 2, 1)        5.000000            0.000000
                       K( 2, 2)        0.000000            7.252685
                       K( 3, 1)        0.000000            1.341700
                       K( 3, 2)        4.000000            0.000000
                       K( 4, 1)        7.000000            0.000000
                       K( 4, 2)        0.000000            1.992119
                       K( 5, 1)        0.000000            2.922492
                       K( 5, 2)        6.000000            0.000000
                       K( 6, 1)        1.000000            0.000000
                       K( 6, 2)        10.00000            0.000000

如果工地到工地之间也有道路连接

假设每个工地都是一个点,那么这个点送进的水泥数量 i n i in_i ini和送出的水泥数量 o u t i out_i outi需要满足 i n i − o u t i > = d i in_i - out_i >= d_i ini−outi>=di , d i d_i di为该点水泥日用量

如果把料场也算进去,那么就需要设料场的 d d d为0即可,即料场可以不留任何水泥

将所有的道路编号 z = 1 , 2 , 3 , 4... z=1,2,3,4... z=1,2,3,4...,设改道路

编程求解

思路1:

化成图 , 遍历每个工厂,找到工厂到料场的最短距离(bfs),用这个最短距离替换料场和工地距离再带入上面问题模型求解即可:

C++:

cpp 复制代码
#include <iostream>
#include <cmath>
#include <queue>
using namespace  std;
double a[10] = {0, 1.25,8.75,0.5,5.75,3,7.25,5,2},b[10] = {0, 1.25,0.75,4.75,5,6.5,7.75,1,7};
double px = 5 , py = 1;
double qx = 2 , qy = 7;
double dis[10][10];
double min_dis[10]; // p
double min_dis2[10]; // q

void bfs(int begin){
    queue<int>q;
    q.push(begin);
    while(!q.empty()){
        int x = q.front();q.pop();
        for(int i=1;i<=8;i++){
            if(begin == 7){
                if(min_dis[i] > min_dis[x] + dis[x][i]){
                    min_dis[i] = min_dis[x] + dis[x][i];
                    q.push(i);
                }
            }
            else{
                if(min_dis2[i] > min_dis2[x] + dis[x][i]){
                    min_dis2[i] = min_dis2[x] + dis[x][i];
                    q.push(i);
                }
            }
        }
    }
}


int main() {
    //init dis
    for(int i=1;i<=8;i++){
        for(int j=i+1;j<=8;j++){
            dis[i][j] = dis[j][i] = sqrt((a[i]-a[j]) * (a[i]-a[j])+  (b[i]-b[j])*(b[i]-b[j])); // 初始化距离
        }
    }
    for(int i=1;i<=6;i++)min_dis[i] = min_dis2[i] = 0x3f3f3f3f; // max set
    min_dis[7] = min_dis2[8] = 0;
    bfs(7); // p
    bfs(8); // q
    for(int i=1;i<=6;i++){
        cout << min_dis[i] << ' ';
        
    }cout << '\n';
    for(int i=1;i<=6;i++){
        cout << min_dis2[i] << ' ';

    }cout << '\n';
    return 0;
}

求解得

cpp 复制代码
3.75832 3.75832 5.85769 4.06971 5.85235 7.11512
5.79871 9.19918 2.70416 4.25 1.11803 5.3033

或者:

cpp 复制代码
for(int i=1;i<=6;i++){
        cout << min_dis[i] << ',';
        cout << min_dis2[i] << ',';
    }

求解得

cpp 复制代码
3.75832,5.79871,3.75832,9.19918,5.85769,2.70416,4.06971,4.25,5.85235,1.11803,7.11512,5.3033,
bash 复制代码
sets:
 aa/1..6/:d;
 bb/1..2/:e;
 cc(bb,aa):k,dis;
endsets
data:
 d = 3,5,4,7,6,11;
 e = 20,20;
 dis= 3.75832,3.75832,5.85769,4.06971,5.85235,7.11512,5.79871,9.19918,2.70416,4.25,1.11803,5.3033;
enddata
min = @sum(cc(i,j):k(i,j)*dis(i,j));
@for(aa(i):@sum(bb(j):k(j,i))=d(i));
@for(bb(j):@sum(aa(i):k(j,i))<=e(j));
bash 复制代码
  Objective value:                              136.2275
  Infeasibilities:                              0.000000

2)为了进一步减少吨公里数,打算舍弃目前的两个临时料场,改建两个新的临时料场日储量还是20t,给出新料场的位置。

直接用第一问的模型:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=min∑j=1,2∑i∈N,i<=6(Xijdisij)

设新料场坐标为 P ( x 1 , y 2 ) P(x_1,y_2) P(x1,y2)和 Q ( x 2 , y 2 ) Q(x_2,y_2) Q(x2,y2)

则:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 X i j ( x j − a i ) 2 + ( y j − b i ) 2 ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }X_{ij} \sqrt{(x_j-a_i)^2+(y_j-b_i)^2}} ans=min∑j=1,2∑i∈N,i<=6Xij(xj−ai)2+(yj−bi)2

如果直接带入LINGO求解,实际上就是问题一的答案去掉 x , y x,y x,y的复制

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;
 !x = 5,2;
 !y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

如果赋初值给 x , y x,y x,y

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;

enddata
init:
 x = 5,2;
 y = 1,7;
endinit
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

MATLAB求解看数学规划模型(2)-非线性规划

相关推荐
骄傲的心别枯萎14 分钟前
RV1126 NO.16:通过多线程同时获取H264和H265码流
linux·c++·音视频·rv1126
落羽的落羽18 分钟前
【C++】特别的程序错误处理方式——异常机制
开发语言·c++
空山新雨(大队长)27 分钟前
C 语言第一课:hello word c
c++·c·exe
春蕾夏荷_72829772530 分钟前
c++ 第三方库与个人封装库
c++·三方库
牵牛老人1 小时前
Qt C++ 复杂界面处理:巧用覆盖层突破复杂界面处理难题之一
数据库·c++·qt
wallflower20201 小时前
滑动窗口算法在前端开发中的探索与应用
前端·算法
林木辛1 小时前
LeetCode热题 42.接雨水
算法·leetcode
MicroTech20251 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
星梦清河1 小时前
宋红康 JVM 笔记 Day15|垃圾回收相关算法
jvm·笔记·算法
货拉拉技术2 小时前
揭秘语音交互的核心技术
算法