【数学建模】建筑工地开工问题

题目:

某公司有 6 6 6个建筑工地要开工,每个工地的位置(用平面坐标 ( a , b ) (a,b) (a,b)表示,距离单位: k m km km)及水泥日用量 d ( 单位 : t ) d(单位:t) d(单位:t)由下表给出,目前有两个临时料场位于 P ( 5 , 1 ) , Q ( 2 , 7 ) P(5,1),Q(2,7) P(5,1),Q(2,7),日储量各有 20 t 20t 20t。

工地 1 2 3 4 5 6
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5 6.5 7.75
d 3 5 4 7 6 11

研究下列问题:

1)假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从每个料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

首先我们要知道吨公里数是什么:

设运送水泥为 x x x吨,运送了 y y y公里,那么吨公里数就是 x y xy xy

所以我们可以设每次运输水泥为 x i x_i xi吨,运送了 y i y_i yi公里,那么总的吨公里数最小模型 就是
min ⁡ ∑ i ∈ N ( x i y i ) \min{\sum_{ i\in N }(x_iy_i)} min∑i∈N(xiyi)

建立供应条件模型:

设料场 i i i到工地 j j j的运输量为 X i j X_{ij} Xij

则所有料场向某工地运输量之和大于等于该工地水泥日用量 d i d_i di:
∑ j ∈ N X i j > = d i , i ∈ N \sum_{ j\in N }X_{ij} >= d_i, i\in N ∑j∈NXij>=di,i∈N

且某料场对所有工地运算量之和不得超过料场的日储量 e j e_j ej:
∑ i ∈ N X i j ≤ e j , j ∈ N \sum_{ i\in N }X_{ij} \le e_j, j\in N ∑i∈NXij≤ej,j∈N

最后建立料场和工地距离模型 :

设料场 P ( x , y ) P(x,y) P(x,y)到工地 A ( a , b ) A(a,b) A(a,b)的运输量为 d i s P A dis_{PA} disPA

则: d i s P A = ( x − a ) 2 + ( y − b ) 2 dis_{PA} = \sqrt{(x-a)^2+(y-b)^2} disPA=(x−a)2+(y−b)2

已知有6个工地和2个料场

将料场和工地距离模型和供应条件模型带入吨公里数最小模型可得:
a n s = min ⁡ ∑ i ∈ N ( X i j d i s i j ) , j = 1 , 2 ans = \min{\sum_{ i\in N }(X_{ij}dis_{ij})},j=1,2 ans=min∑i∈N(Xijdisij),j=1,2

或者
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=min∑j=1,2∑i∈N,i<=6(Xijdisij)

建模后带入已知进行LINGO求解:

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;
 x = 5,2;
 y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

解出:

bash 复制代码
Objective value:                              136.2275
                       K( 1, 1)        3.000000            0.000000
                       K( 1, 2)        0.000000            3.852207
                       K( 2, 1)        5.000000            0.000000
                       K( 2, 2)        0.000000            7.252685
                       K( 3, 1)        0.000000            1.341700
                       K( 3, 2)        4.000000            0.000000
                       K( 4, 1)        7.000000            0.000000
                       K( 4, 2)        0.000000            1.992119
                       K( 5, 1)        0.000000            2.922492
                       K( 5, 2)        6.000000            0.000000
                       K( 6, 1)        1.000000            0.000000
                       K( 6, 2)        10.00000            0.000000

如果工地到工地之间也有道路连接

假设每个工地都是一个点,那么这个点送进的水泥数量 i n i in_i ini和送出的水泥数量 o u t i out_i outi需要满足 i n i − o u t i > = d i in_i - out_i >= d_i ini−outi>=di , d i d_i di为该点水泥日用量

如果把料场也算进去,那么就需要设料场的 d d d为0即可,即料场可以不留任何水泥

将所有的道路编号 z = 1 , 2 , 3 , 4... z=1,2,3,4... z=1,2,3,4...,设改道路

编程求解

思路1:

化成图 , 遍历每个工厂,找到工厂到料场的最短距离(bfs),用这个最短距离替换料场和工地距离再带入上面问题模型求解即可:

C++:

cpp 复制代码
#include <iostream>
#include <cmath>
#include <queue>
using namespace  std;
double a[10] = {0, 1.25,8.75,0.5,5.75,3,7.25,5,2},b[10] = {0, 1.25,0.75,4.75,5,6.5,7.75,1,7};
double px = 5 , py = 1;
double qx = 2 , qy = 7;
double dis[10][10];
double min_dis[10]; // p
double min_dis2[10]; // q

void bfs(int begin){
    queue<int>q;
    q.push(begin);
    while(!q.empty()){
        int x = q.front();q.pop();
        for(int i=1;i<=8;i++){
            if(begin == 7){
                if(min_dis[i] > min_dis[x] + dis[x][i]){
                    min_dis[i] = min_dis[x] + dis[x][i];
                    q.push(i);
                }
            }
            else{
                if(min_dis2[i] > min_dis2[x] + dis[x][i]){
                    min_dis2[i] = min_dis2[x] + dis[x][i];
                    q.push(i);
                }
            }
        }
    }
}


int main() {
    //init dis
    for(int i=1;i<=8;i++){
        for(int j=i+1;j<=8;j++){
            dis[i][j] = dis[j][i] = sqrt((a[i]-a[j]) * (a[i]-a[j])+  (b[i]-b[j])*(b[i]-b[j])); // 初始化距离
        }
    }
    for(int i=1;i<=6;i++)min_dis[i] = min_dis2[i] = 0x3f3f3f3f; // max set
    min_dis[7] = min_dis2[8] = 0;
    bfs(7); // p
    bfs(8); // q
    for(int i=1;i<=6;i++){
        cout << min_dis[i] << ' ';
        
    }cout << '\n';
    for(int i=1;i<=6;i++){
        cout << min_dis2[i] << ' ';

    }cout << '\n';
    return 0;
}

求解得

cpp 复制代码
3.75832 3.75832 5.85769 4.06971 5.85235 7.11512
5.79871 9.19918 2.70416 4.25 1.11803 5.3033

或者:

cpp 复制代码
for(int i=1;i<=6;i++){
        cout << min_dis[i] << ',';
        cout << min_dis2[i] << ',';
    }

求解得

cpp 复制代码
3.75832,5.79871,3.75832,9.19918,5.85769,2.70416,4.06971,4.25,5.85235,1.11803,7.11512,5.3033,
bash 复制代码
sets:
 aa/1..6/:d;
 bb/1..2/:e;
 cc(bb,aa):k,dis;
endsets
data:
 d = 3,5,4,7,6,11;
 e = 20,20;
 dis= 3.75832,3.75832,5.85769,4.06971,5.85235,7.11512,5.79871,9.19918,2.70416,4.25,1.11803,5.3033;
enddata
min = @sum(cc(i,j):k(i,j)*dis(i,j));
@for(aa(i):@sum(bb(j):k(j,i))=d(i));
@for(bb(j):@sum(aa(i):k(j,i))<=e(j));
bash 复制代码
  Objective value:                              136.2275
  Infeasibilities:                              0.000000

2)为了进一步减少吨公里数,打算舍弃目前的两个临时料场,改建两个新的临时料场日储量还是20t,给出新料场的位置。

直接用第一问的模型:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 ( X i j d i s i j ) ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }(X_{ij}dis_{ij})} ans=min∑j=1,2∑i∈N,i<=6(Xijdisij)

设新料场坐标为 P ( x 1 , y 2 ) P(x_1,y_2) P(x1,y2)和 Q ( x 2 , y 2 ) Q(x_2,y_2) Q(x2,y2)

则:
a n s = min ⁡ ∑ j = 1 , 2 ∑ i ∈ N , i < = 6 X i j ( x j − a i ) 2 + ( y j − b i ) 2 ans = \min{\sum_{j=1,2 }\sum_{ i\in N ,i<=6 }X_{ij} \sqrt{(x_j-a_i)^2+(y_j-b_i)^2}} ans=min∑j=1,2∑i∈N,i<=6Xij(xj−ai)2+(yj−bi)2

如果直接带入LINGO求解,实际上就是问题一的答案去掉 x , y x,y x,y的复制

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;
 !x = 5,2;
 !y = 1,7;
enddata
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

如果赋初值给 x , y x,y x,y

bash 复制代码
sets:
 aa/1..6/:a,b,d;
 bb/1..2/:e,x,y;
 cc(aa,bb):k;
endsets
data:
 a = 1.25,8.75,0.5,5.75,3,7.25;
 b = 1.25,0.75,4.75,5,6.5,7.75;
 d = 3,5,4,7,6,11;
 e = 20,20;

enddata
init:
 x = 5,2;
 y = 1,7;
endinit
min = @sum(cc(i,j):k(i,j)*@sqrt((a(i)-x(j))^2 + (b(i)-y(j))^2));
@for(aa(i):@sum(bb(j):k(i,j))=d(i));
@for(bb(j):@sum(aa(i):k(i,j))<=e(j));

MATLAB求解看数学规划模型(2)-非线性规划

相关推荐
人才程序员24 分钟前
【C++拓展】vs2022使用SQlite3
c语言·开发语言·数据库·c++·qt·ui·sqlite
不能只会打代码38 分钟前
蓝桥杯例题一
算法·蓝桥杯
OKkankan44 分钟前
实现二叉树_堆
c语言·数据结构·c++·算法
Ciderw2 小时前
MySQL为什么使用B+树?B+树和B树的区别
c++·后端·b树·mysql·面试·golang·b+树
yerennuo2 小时前
windows第七章 MFC类CWinApp介绍
c++·windows·mfc
ExRoc2 小时前
蓝桥杯真题 - 填充 - 题解
c++·算法·蓝桥杯
利刃大大3 小时前
【二叉树的深搜】二叉树剪枝
c++·算法·dfs·剪枝
肖田变强不变秃4 小时前
C++实现有限元计算 矩阵装配Assembly类
开发语言·c++·矩阵·有限元·ansys
c++初学者ABC5 小时前
学生管理系统C++版(简单版)详解
c++·结构体·学生管理系统
kucupung5 小时前
【C++基础】多线程并发场景下的同步方法
开发语言·c++