[pytorch基础操作] 矩阵batch乘法大全(dot,* 和 mm,bmm,@,matmul)

逐元素相乘

逐元素相乘是指对应位置上的元素相乘,要求张量的形状相同

torch.dot

按位相乘torch.dot:计算两个张量的点积(内积),只支持1D张量(向量),不支持broadcast。

python 复制代码
import torch

# 创建两个向量
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 计算点积
result = torch.dot(a, b)
print(result)  # 输出: tensor(32)

*

*: 逐元素相乘,适用于任何维度的张量,要求张量的形状相同。

python 复制代码
import torch

# 创建两个张量
a = torch.randn(2, 3, 4)
b = torch.randn(2, 3, 4)

# 逐元素相乘
result = a * b
print(result.shape)

矩阵乘法

矩阵乘法,执行矩阵乘法,前行乘后列,要求第一个矩阵的列数(tensor1.shape[-1])第二个矩阵的行数(tensor2.shape[-2])相等。如shape=(n,r)乘shape=(r,m)

torch.mm

torch.mm: 执行两个矩阵的乘法,适用于2D张量(矩阵)(h,w)/(seq_len,dim),不支持broadcast。

python 复制代码
import torch

# 创建两个矩阵
a = torch.rand(2,3)
b = torch.rand(3,2)

# 计算矩阵乘法
result = torch.mm(a, b)
print(result.shape)  # [2,2]

torch.bmm

torch.bmm: 执行两个批次矩阵的乘法,适用于3D张量(b,h,w)/(b,seq_len,dim),不支持broadcast。

python 复制代码
import torch

# 创建两个批次矩阵
batch1 = torch.randn(10, 3, 4)  # 10个3x4的矩阵
batch2 = torch.randn(10, 4, 5)  # 10个4x5的矩阵

# 计算批次矩阵乘法
result = torch.bmm(batch1, batch2)
print(result.shape)  # [10, 3, 5]

@ 和 torch.matmul

@torch.matmul: 两者完全等价,执行任意维度 两个张量的矩阵乘法,支持张量的broadcast广播规则。

python 复制代码
import torch

# 创建两个张量
a = torch.randn(2, 8, 128, 64)
b = torch.randn(2, 8, 64, 128)

# 使用 @ 运算符进行矩阵乘法
result = a @ b
print(result.shape)  # [2, 8, 128, 128]

# 使用 torch.matmul 进行矩阵乘法
result = torch.matmul(a, b)
print(result.shape)  # [2, 8, 128, 128]
相关推荐
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
weixin_507929914 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
weixin_456904276 小时前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
Keying,,,,7 小时前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
盼小辉丶13 小时前
Transformer实战(4)——从零开始构建Transformer
pytorch·深度学习·transformer
之歆16 小时前
Al大模型-本地私有化部署大模型-大模型微调
人工智能·pytorch·ai作画
失散131 天前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
Re_draw_debubu1 天前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
易木木木响叮当1 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
coding者在努力2 天前
从零开始:用PyTorch实现线性回归模型
人工智能·pytorch·线性回归