[pytorch基础操作] 矩阵batch乘法大全(dot,* 和 mm,bmm,@,matmul)

逐元素相乘

逐元素相乘是指对应位置上的元素相乘,要求张量的形状相同

torch.dot

按位相乘torch.dot:计算两个张量的点积(内积),只支持1D张量(向量),不支持broadcast。

python 复制代码
import torch

# 创建两个向量
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 计算点积
result = torch.dot(a, b)
print(result)  # 输出: tensor(32)

*

*: 逐元素相乘,适用于任何维度的张量,要求张量的形状相同。

python 复制代码
import torch

# 创建两个张量
a = torch.randn(2, 3, 4)
b = torch.randn(2, 3, 4)

# 逐元素相乘
result = a * b
print(result.shape)

矩阵乘法

矩阵乘法,执行矩阵乘法,前行乘后列,要求第一个矩阵的列数(tensor1.shape[-1])第二个矩阵的行数(tensor2.shape[-2])相等。如shape=(n,r)乘shape=(r,m)

torch.mm

torch.mm: 执行两个矩阵的乘法,适用于2D张量(矩阵)(h,w)/(seq_len,dim),不支持broadcast。

python 复制代码
import torch

# 创建两个矩阵
a = torch.rand(2,3)
b = torch.rand(3,2)

# 计算矩阵乘法
result = torch.mm(a, b)
print(result.shape)  # [2,2]

torch.bmm

torch.bmm: 执行两个批次矩阵的乘法,适用于3D张量(b,h,w)/(b,seq_len,dim),不支持broadcast。

python 复制代码
import torch

# 创建两个批次矩阵
batch1 = torch.randn(10, 3, 4)  # 10个3x4的矩阵
batch2 = torch.randn(10, 4, 5)  # 10个4x5的矩阵

# 计算批次矩阵乘法
result = torch.bmm(batch1, batch2)
print(result.shape)  # [10, 3, 5]

@ 和 torch.matmul

@torch.matmul: 两者完全等价,执行任意维度 两个张量的矩阵乘法,支持张量的broadcast广播规则。

python 复制代码
import torch

# 创建两个张量
a = torch.randn(2, 8, 128, 64)
b = torch.randn(2, 8, 64, 128)

# 使用 @ 运算符进行矩阵乘法
result = a @ b
print(result.shape)  # [2, 8, 128, 128]

# 使用 torch.matmul 进行矩阵乘法
result = torch.matmul(a, b)
print(result.shape)  # [2, 8, 128, 128]
相关推荐
lbb 小魔仙2 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗2 小时前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
哈__4 小时前
CANN内存管理与资源优化
人工智能·pytorch
池央5 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
DeniuHe6 小时前
Pytorch中的直方图
pytorch
哈__6 小时前
CANN多模型并发部署方案
人工智能·pytorch
DeniuHe7 小时前
Pytorch中的众数
人工智能·pytorch·python
深鱼~8 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_8 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ8 小时前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass