深度学习小白向-如何理解batchsize

什么是batchsize?

一次训练(梯度更新)所选取的样本数。

batchsize的影响

对准确率的影响

  1. batchsize越大越能得到准确的梯度方向,但是由于深度学习问题一般是非凸问题,所以也容易导致陷入局部最优点。--另外batchsize越大占用的GPU显存越大。
  2. batchsize越小得到的梯度方向越不准确,梯度易受极端值影响导致剧烈震荡。但是,梯度的不准确性的影响也有可能会让梯度下降的过程离开局部最优点或者鞍点,从而有机会寻找全局最优解。

对运行时间的影响

  1. 在一定范围内,随着batchsize的增大,可以提高内存的利用率和并行计算效率,会使得处理相同数据量的速度加快。
  2. 在一定范围内,随着batchsize的增大,达到相同精度所需要的epoch数增多。
  3. 当batchsize过大的时候,可能会导致无法将整个批次同时加载到显存中,需要分成更小的批次进行计算,这不仅增加了数据传输和显存管理的开销,还可能会降低训练速度。
  4. 由于上述原因,batchsize达到某个时候达到时间上的最优。

batchsize的设置

将batchsize设置为2的n次方可以加快计算速度,因为计算机的gpu和cpu的memory都是按照2进制的方式进行存储的。

相关推荐
Chaos_Wang_17 分钟前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
新智元22 分钟前
美国 CS 专业卷上天,满分学霸惨遭藤校全拒!父亲大受震撼引爆热议
人工智能·openai
新智元24 分钟前
美国奥数题撕碎 AI 数学神话,顶级模型现场翻车!最高得分 5%,DeepSeek 唯一逆袭
人工智能·openai
Baihai_IDP34 分钟前
「DeepSeek-V3 技术解析」:无辅助损失函数的负载均衡
人工智能·llm·deepseek
硅谷秋水41 分钟前
大语言模型智体的综述:方法论、应用和挑战(下)
人工智能·深度学习·机器学习·语言模型·自然语言处理
TGITCIC1 小时前
BERT与Transformer到底选哪个-下部
人工智能·gpt·大模型·aigc·bert·transformer
Lx3521 小时前
AutoML逆袭:普通开发者如何玩转大模型调参
人工智能
IT古董1 小时前
【漫话机器学习系列】185.神经网络参数的标准初始化(Normalized Initialization of Neural Network Parameter
人工智能
嘻嘻哈哈开森1 小时前
Java开发工程师转AI工程师
人工智能·后端
rocksun1 小时前
Agentic AI和平台工程:如何结合
人工智能·devops