微软刚开源就删库的WizardLM-2:MT-Bench 榜单评测超越GPT-4,7B追平Qwen1.5-32B

前言

微软最近发布的WizardLM-2大型语言模型因其先进的技术规格和短暂的开源后突然撤回,引起了科技界的广泛关注。WizardLM-2包括三个不同规模的模型,分别是8x22B、70B和7B,均展现了在多语言处理、复杂对话、推理和代理任务上的卓越能力。

模型性能和架构

WizardLM-2系列模型在多个基准测试中表现出色。其中,7B版本在基准任务上与Qwen1.5-32B相当;70B版本超过了同类的GPT-4-0613;最高规格的8x22B版本则在MT-Bench上取得了9.12的高分,超越了所有现有的GPT-4版本。这些成绩彰显了微软在模型优化和多任务处理技术上的领先地位。

独特的训练方法

WizardLM-2的训练方法体现了多个创新点:

  • 加权抽样和数据预处理: 微软通过分析数据源中不同属性的分布情况,并通过加权抽样调整训练数据中各属性的权重,使得最终的数据集更符合实际应用场景的需要。
  • 渐进式学习: 与传统的全量数据训练不同,微软采用渐进式学习方法,通过逐步增加训练数据的复杂性,使模型能在较少的数据中学到更有效的信息。
  • Evol Lab和AI Align AI: 这一框架允许多个最先进的语言模型相互教学和改进。Evol-Instruct和Evol-Answer的方法使模型能自动生成高质量的指令并优化响应。

训练阶段的详细创新

  • Evol-Instruct和Evol-Answer: 这两种方法通过重新设计和评估指令生成过程,增强了模型生成指令的质量和响应的相关性。
  • 监督学习与强化学习的结合使用: 通过结合使用监督学习和强化学习,微软优化了模型的学习过程。特别是,通过Stage-DPO和RLEIF技术,模型能在离线和在线环境下进行更为精确的学习和优化。

撤回原因与未来展望

尽管WizardLM-2在技术上取得了显著进展,但微软因忘记进行毒性测试而短暂撤回了模型。这一事件突显了在开发和部署前对AI模型进行全面测试的重要性,确保技术的安全性和可靠性。

结论

WizardLM-2的开发和短暂撤回事件虽然带来了一定的争议,但也展示了微软在人工智能领域的强大实力和对高标准的承诺。预计在完成必要的测试和优化后,这些模型将为AI研究和应用带来新的可能性,特别是在处理多语言和复杂交互任务方面。微软的这一步也可能推动整个行业向更开放、更安全的AI应用方向迈进。

模型下载

Huggingface模型下载

huggingface.co/MaziyarPana...

AI快站模型免费加速下载

aifasthub.com/models/Mazi...

相关推荐
数据小小爬虫2 分钟前
Python爬虫获取AliExpress商品详情
开发语言·爬虫·python
小爬虫程序猿2 分钟前
利用Python爬虫速卖通按关键字搜索AliExpress商品
开发语言·爬虫·python
诚威_lol_中大努力中17 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
Eiceblue22 分钟前
使用Python获取PDF文本和图片的精确位置
开发语言·python·pdf
我叫czc24 分钟前
【Python高级353】python实现多线程版本的TCP服务器
服务器·python·tcp/ip
爱数学的程序猿28 分钟前
Python入门:6.深入解析Python中的序列
android·服务器·python
中关村科金37 分钟前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_41 分钟前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人
comli_cn1 小时前
使用清华源安装python包
开发语言·python