【KG+RAG 论文】医学知识图谱检索增强 LLM 的框架 —— KG-RAG

论文:Biomedical knowledge graph-enhanced prompt generation for large language models

⭐⭐⭐

Code:github.com/BaranziniLab/KG_RAG

文章目录

论文速读

这篇论文提出了 KG-RAG 的框架,使用医学知识图谱(SPOKE)来对 LLM 进行检索增强。

该框架的运行效果如下图:

上图中,黄色部分是用户问题,蓝色部分是 GPT-4 的原生回答,绿色部分是经过 KG-RAG 框架处理后生成的回答。左边的 (A) 是一个关于一跳推理的问题,右边的 (B) 是一个关于两条推理的问题。

可以观察到,KG-RAG 可以解决这个单跳和双跳的问题,并且相比于 GPT-4,可以提供更加简单明了的答案。

工作过程:KG-RAG 框架的基本工作原理如下:

  1. 实体识别与实体链接:根据用户的问题,使用 LLM 做问句中的疾病实体识别,再对识别的结果对 KG 进行实体链接的检索,得到 KG 中相应的节点(即疾病的节点)
  2. 上下文提取(Context pruning):从 KG 中召回与这个实体相关联子图,再基于 embedding 计算语义相似度从子图中过滤出有用的三元组,之后再将这些三元组将其转换为自然语言
  3. 提示组装与文本生成:把上一步得到的自然语言,与 question 拼在一起,组合为 prompt,再加上 SYSTEM_PROMPT,送给 LLM 来回答,从而获得最终答案

模型效果

可以看到,在 KG-RAG 框架下,各 LLM 的表现都有提升。

总结

这篇文章提出的框架是一个结合 KG 来做 RAG 的有效方案,但当用于工业落地时,仍会存在很多问题:

  • 实体识别使用了 LLM,之后又做了 entity link,这样的效率肯定不太高。
  • 为了从召回子图过滤出有用的三元组,这里需要专门的 embedding 模型去做
  • 从关联子图 -> 自然语言这一步,也存在很多坑

这篇文章的工作主要是在医学领域结合 KG 来实现 RAG,但在其他领域,需要结合实际的场景去定制具体的策略。

相关推荐
knqiufan2 小时前
深度解析影响 RAG 召回率的四大支柱——模型、数据、索引与检索
llm·milvus·向量数据库·rag
麻雀无能为力2 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心2 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield3 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域4 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技4 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_14 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎5 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎5 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊6 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪