RoadBEV:鸟瞰图中的道路表面重建

1. 代码地址

GitHub - ztsrxh/RoadBEV: Codes for RoadBEV: road surface reconstruction in Bird's Eye View

2. 摘要

本文介绍了RoadBEV:鸟瞰图中的道路表面重建。道路表面条件(特别是几何形状)极大地影响了自动驾驶汽车的驾驶性能。基于视觉的在线道路重建有望提前获取道路信息。现有的解决方案(例如单目深度估计和双目匹配)性能较差。最新的鸟瞰图(BEV)感知为更可靠、更精确的重建提供了巨大的潜力。本文统一地提出了两种简单而有效的BEV道路高程重建模型,称为RoadBEV-mono和RoadBEV-stereo,其分别使用单目和双目图像来估计道路高程。前者基于从图像中查询的体素特征直接拟合高程值,而后者基于表示左右体素特征之间差异的BEV体积来有效识别道路高程模式。精辟的分析证明了它们与透视图的一致性和差异性。在现实世界数据集上的实验验证了模型的有效性和卓越性。RoadBEV-mono和RoadBEV-stereo的高程误差分别达到1.83cm和0.56cm。在基于单目图像的BEV中,估计性能提高了50%。本文所提出的模型具有良好的实际应用前景,为自动驾驶中基于视觉的BEV感知提供了有价值的参考。

3. 主要贡献

本文的贡献总结如下:

  • 本文首次通过分析和实验证明了在BEV中实现道路表面重建的必要性和优越性;
  • 对于基于单目和双目的方案,本文相应地提出了两个模型,称为RoadBEV-mono和RoadBEV-stereo,并且详细地解释了它们的机制;
  • 本文全面测试和分析了所提出模型的性能,为未来研究提供了有价值的见解和前景。

4. 数据集与预处理

5. 方法

5.1. 特征体素与高度回归

5.2. RoadBEV-mono

5.3. RoadBEV-stereo

5.4. 损失函数

6. 实验

6.1. 实验细节

6.2. 性能与对比

6.3. 路面重建可视化

6.4. RoadBEV-mono消融实验

6.5. RoadBEV-stereo消融实验

7. 总结

本文首次在鸟瞰图中重建道路表面高程,分别提出并且分析了基于单目和双目图像的RoadBEV-mono和RoadBEV-stereo。本文揭示了BEV中单目估计和双目匹配与透视图中的机制相同,但是可以通过缩小搜索范围和直接在高程方向上挖掘特征来改进。在现实世界数据集上进行的全面实验验证了所提出的BEV体积、估计头和参数设置的可行性和优越性。对于单目相机,BEV的重建性能比透视图的重建性能提高了50%。同时,在BEV中,使用双目相机的性能是使用单目相机的三倍。本文提供了有关模型的深入分析,其开创性的探索也为BEV感知、3D重建和3D检测的进一步研究和应用提供了有价值的参考。

参考文献

RoadBEV: Road Surface Reconstruction in Bird's Eye View

https://zhuanlan.zhihu.com/p/692651589

相关推荐
失散134 小时前
深度学习——03 神经网络(2)-损失函数
人工智能·深度学习·神经网络·损失函数
hans汉斯9 小时前
基于深度学习的苹果品质智能检测算法研究
人工智能·深度学习·算法
2401_831896039 小时前
深度学习(5):激活函数
人工智能·深度学习
deephub10 小时前
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
人工智能·深度学习·神经网络·ocr
蒋星熠10 小时前
Rust 异步生态实战:Tokio 调度、Pin/Unpin 与零拷贝 I/O
人工智能·后端·python·深度学习·rust
地平线开发者10 小时前
征程 6 | 自定义查表算子实现量化部署
算法·自动驾驶
巫婆理发22212 小时前
浅层神经网络
人工智能·深度学习·神经网络
未来之窗软件服务12 小时前
自建知识库,向量数据库 体系建设(二)之BERT 与.NET 8
人工智能·深度学习·bert·知识库·向量数据库·仙盟创梦ide·东方仙盟
失散1316 小时前
深度学习——03 神经网络(3)-网络优化方法
网络·深度学习·神经网络
m0_6038887116 小时前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览