already use model.save(). not use the load weight. the question is : self.b1 = BatchNormalization(), in my code, the BatchNormalization(), do not take any parameter, why Layer 'batch_normalization_20' expected 4 variables?
Sent by you: already use model.save(). not use the load weight. the question is : self.b1 = BatchNormalization(), in my code, the BatchNormalization(), do not take any parameter, why Layer 'batch_normalization_20' expected 4 variables?
change to 2.15.0 , it is ok. but a lot of change on
model_res_net.compile(optimizer=optimizer,
# loss=[tf.keras.losses.CategoricalCrossentropy(from_logits=False)] * 4,
# # metrics=['categorical_accuracy'] * 4,
# metrics=[tf.keras.metrics.CategoricalAccuracy(name='categorical_accuracy'),
# tf.keras.metrics.CategoricalAccuracy(name='categorical_accuracy_1'),
# tf.keras.metrics.CategoricalAccuracy(name='categorical_accuracy_2'),
# tf.keras.metrics.CategoricalAccuracy(name='categorical_accuracy_3')],
loss={'output_1': tf.keras.losses.CategoricalCrossentropy(from_logits=False),
'output_2': tf.keras.losses.CategoricalCrossentropy(from_logits=False),
'output_3': tf.keras.losses.CategoricalCrossentropy(from_logits=False),
'output_4': tf.keras.losses.CategoricalCrossentropy(from_logits=False)},
metrics={
'output_1': tf.keras.metrics.CategoricalAccuracy(name='acc'),
'output_2': tf.keras.metrics.CategoricalAccuracy(name='acc'),
'output_3': tf.keras.metrics.CategoricalAccuracy(name='acc'),
'output_4': tf.keras.metrics.CategoricalAccuracy(name='acc')},
loss_weights=[1.0, 1.0, 1.0, 1.0]
)