回归(Regression)

回归(Regression)在统计学和机器学习中是一种预测建模技术,它研究的是因变量(目标变量)和自变量(特征)之间的关系。回归分析的目的是建立一个数学模型,这个模型能够基于一个或多个自变量来预测因变量的值。与分类问题不同,回归问题中的目标变量通常是连续的数值。

回归分析可以分为线性回归和非线性回归两大类。线性回归假设因变量和自变量之间存在线性关系,通过最小二乘法等方法找到最佳拟合的直线或超平面。非线性回归则允许因变量和自变量之间存在更复杂的非线性关系,可能需要使用多项式回归、决策树回归、支持向量回归、随机森林回归或深度学习模型等方法来拟合数据。

在回归问题中,常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。这些指标可以帮助我们衡量模型在训练集和测试集上的性能,从而选择合适的模型和参数。

回归分析在各个领域都有广泛的应用,如金融预测、房价预测、销售预测、医疗诊断等。通过回归分析,我们可以更好地理解数据之间的关系,预测未来的趋势,以及制定有效的决策。

相关推荐
systeminof2 分钟前
从静态到实时对抗:首例安卓Runtime AI病毒解析
android·人工智能
向哆哆7 分钟前
白血病细胞与正常细胞识别数据集:医学影像与智能诊断的细胞分析数据
人工智能·目标检测·计算机视觉
龙亘川13 分钟前
城管住建领域丨市政设施监测功能详解(4)——路灯设施监测
大数据·人工智能·路灯设施监测
winfreedoms17 分钟前
ROS2坐标转换,正解反解——黑马程序员ROS2课程上课笔记(5)
人工智能·笔记
正宗咸豆花27 分钟前
混合精度NPU,爱芯元智如何登顶全球中高端边缘AI芯片市场
人工智能
net3m3340 分钟前
自动分工 现象时,一共有几种可能得权重组合变化,如何确保这些组合的扫描时的不发生组合爆炸
人工智能·c#·ai编程
wuxi_joe42 分钟前
中国装备制造企业如何出海:以“配置管理”为核心构建全球竞争力
运维·人工智能·制造
人工智能AI技术44 分钟前
2026 AI Agent开发速成:从0到1搭建可落地智能体
人工智能
何伯特44 分钟前
深度学习中的三种偏移:协变量偏移、标签偏移与概念偏移
人工智能·深度学习
我是中国人哦(⊙o⊙)1 小时前
我的寒假作业
人工智能·算法·机器学习