回归(Regression)

回归(Regression)在统计学和机器学习中是一种预测建模技术,它研究的是因变量(目标变量)和自变量(特征)之间的关系。回归分析的目的是建立一个数学模型,这个模型能够基于一个或多个自变量来预测因变量的值。与分类问题不同,回归问题中的目标变量通常是连续的数值。

回归分析可以分为线性回归和非线性回归两大类。线性回归假设因变量和自变量之间存在线性关系,通过最小二乘法等方法找到最佳拟合的直线或超平面。非线性回归则允许因变量和自变量之间存在更复杂的非线性关系,可能需要使用多项式回归、决策树回归、支持向量回归、随机森林回归或深度学习模型等方法来拟合数据。

在回归问题中,常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。这些指标可以帮助我们衡量模型在训练集和测试集上的性能,从而选择合适的模型和参数。

回归分析在各个领域都有广泛的应用,如金融预测、房价预测、销售预测、医疗诊断等。通过回归分析,我们可以更好地理解数据之间的关系,预测未来的趋势,以及制定有效的决策。

相关推荐
CareyWYR2 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信4 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20094 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟4 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
小糖学代码4 小时前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播4 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训4 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent4 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
YIN_尹5 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55185 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化