回归(Regression)

回归(Regression)在统计学和机器学习中是一种预测建模技术,它研究的是因变量(目标变量)和自变量(特征)之间的关系。回归分析的目的是建立一个数学模型,这个模型能够基于一个或多个自变量来预测因变量的值。与分类问题不同,回归问题中的目标变量通常是连续的数值。

回归分析可以分为线性回归和非线性回归两大类。线性回归假设因变量和自变量之间存在线性关系,通过最小二乘法等方法找到最佳拟合的直线或超平面。非线性回归则允许因变量和自变量之间存在更复杂的非线性关系,可能需要使用多项式回归、决策树回归、支持向量回归、随机森林回归或深度学习模型等方法来拟合数据。

在回归问题中,常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。这些指标可以帮助我们衡量模型在训练集和测试集上的性能,从而选择合适的模型和参数。

回归分析在各个领域都有广泛的应用,如金融预测、房价预测、销售预测、医疗诊断等。通过回归分析,我们可以更好地理解数据之间的关系,预测未来的趋势,以及制定有效的决策。

相关推荐
之歆13 小时前
Coze 照片知识库深度解析:当 AI 学会「看图说话」
人工智能
苡~13 小时前
【claude skill系列 - 10】Claude_Skill全栈实战_从0到1构建个人AI助手
人工智能·ai编程·api 中转站·稳定ai编程工具
小陈phd13 小时前
多模态大模型学习笔记(五)—— 神经网络激活函数完整指南
人工智能·笔记·神经网络·学习·自然语言处理
曦云沐13 小时前
第四篇:LangChain 1.0 Community 生态全览:第三方集成与厂商包最佳实践
人工智能·langchain·大模型开发框架
yuanmenghao14 小时前
Linux 性能实战 | 第 17 篇:strace 系统调用分析与性能调优 [特殊字符]
linux·python·性能优化
小叮当⇔14 小时前
电动工具品牌简介
大数据·人工智能
bst@微胖子14 小时前
PyTorch深度学习框架项目合集一
人工智能·pytorch·python
Axis tech14 小时前
Xsens动作捕捉系统采集用于人形机器人AI大数据训练的精确运动数据
人工智能·深度学习·机器人
哔哩哔哩技术14 小时前
视频生成推理加速实践:基于全局时间索引的序列并行 3D 位置编码优化
人工智能
KG_LLM图谱增强大模型14 小时前
AI临床决策助手实战:基于真实临床场景的交互式可解释 AI智能体系统研究
人工智能·知识图谱