回归(Regression)

回归(Regression)在统计学和机器学习中是一种预测建模技术,它研究的是因变量(目标变量)和自变量(特征)之间的关系。回归分析的目的是建立一个数学模型,这个模型能够基于一个或多个自变量来预测因变量的值。与分类问题不同,回归问题中的目标变量通常是连续的数值。

回归分析可以分为线性回归和非线性回归两大类。线性回归假设因变量和自变量之间存在线性关系,通过最小二乘法等方法找到最佳拟合的直线或超平面。非线性回归则允许因变量和自变量之间存在更复杂的非线性关系,可能需要使用多项式回归、决策树回归、支持向量回归、随机森林回归或深度学习模型等方法来拟合数据。

在回归问题中,常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等。这些指标可以帮助我们衡量模型在训练集和测试集上的性能,从而选择合适的模型和参数。

回归分析在各个领域都有广泛的应用,如金融预测、房价预测、销售预测、医疗诊断等。通过回归分析,我们可以更好地理解数据之间的关系,预测未来的趋势,以及制定有效的决策。

相关推荐
m***066826 分钟前
SpringBoot项目中读取resource目录下的文件(六种方法)
spring boot·python·pycharm
xixixi7777727 分钟前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔39 分钟前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
eWidget1 小时前
数据可视化进阶:Seaborn 柱状图、散点图与相关性分析
数据库·python·信息可视化·kingbase·数据库平替用金仓·金仓数据库
X54先生(人文科技)1 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家1 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata1 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
清水白石0082 小时前
Python 柯里化完全指南:从函数式思想到工程实践
linux·服务器·python
deephub2 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索