【氮化镓】GaN HEMT SEEs效应影响因素和机制

  1. 研究背景:AlGaN/GaN HEMT因其在高电压、高温和高频率下的操作能力而受到关注,尤其在航空航天和汽车应用中,其辐射响应变得尤为重要。重离子辐射可能导致绝缘体失效,即单事件效应(SEEs)引起的栅介质击穿。

  2. 实验目的:研究AlGaN/GaN HEMT在不同偏压、离子LET(线性能量传递)、辐射通量和总粒子数下对重离子辐射的耐受性。

  3. 实验方法

    • 使用Texas Instruments制造的600 V GaN功率级的关键组件进行测试。
    • 在Texas A&M University的辐射效应设施中进行重离子辐射实验。
    • 使用不同能量的Ne、Ar和Cu离子,通过铝衰减器改变LET。
    • 实验包括恒定粒子数实验和粒子数至失效实验。
  4. 实验结果

    • 观察到重离子诱导的栅介质退化,包括软击穿(SBD)和硬击穿(HBD)事件。
    • 发现辐射诱导的击穿与辐射引起的电荷注入在介质中形成的缺陷相关导电路径有关。
    • 通过辐射后的特性测量,表明介质内部积累了辐射诱导的缺陷。
  5. 电压依赖性

    • 栅电压和漏电压对介质退化有重要影响。
    • 在关断状态下,介质和AlGaN界面下可以收集大量瞬态离子诱导的电荷,这是SEGR的最坏情况。
  6. LET和通量依赖性

    • 粒子LET和通量对栅介质退化过程有显著影响。
    • 高LET值的粒子需要较低的电场来启动击穿过程,并且在相同电场应力下可以诱导更大的栅漏电流。
  7. 结论

    • 研究结果表明,偏置条件、入射离子LET和辐射通量是决定缺陷生成率的关键因素。
    • 重离子辐射导致的SBD和HBD共享相同的统计和物理起源,并与介质中的缺陷相关导电路径有关。

这篇论文提供了对AlGaN/GaN HEMT在辐射环境下性能影响的深入理解,对于设计和应用这些器件在高辐射环境中具有重要意义。

相关推荐
lxmyzzs5 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
fsnine7 小时前
机器学习——数据清洗
人工智能·机器学习
一车小面包8 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
算法_小学生8 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
努力还债的学术吗喽9 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
Monkey的自我迭代10 小时前
机器学习总复习
人工智能·机器学习
大千AI助手10 小时前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
2301_8219199211 小时前
决策树8.19
算法·决策树·机器学习
龙腾亚太12 小时前
基于深度强化学习的无人机自主感知−规划−控制策略
机器学习·无人机·强化学习·深度强化学习
学行库小秘12 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru