【氮化镓】GaN HEMT SEEs效应影响因素和机制

  1. 研究背景:AlGaN/GaN HEMT因其在高电压、高温和高频率下的操作能力而受到关注,尤其在航空航天和汽车应用中,其辐射响应变得尤为重要。重离子辐射可能导致绝缘体失效,即单事件效应(SEEs)引起的栅介质击穿。

  2. 实验目的:研究AlGaN/GaN HEMT在不同偏压、离子LET(线性能量传递)、辐射通量和总粒子数下对重离子辐射的耐受性。

  3. 实验方法

    • 使用Texas Instruments制造的600 V GaN功率级的关键组件进行测试。
    • 在Texas A&M University的辐射效应设施中进行重离子辐射实验。
    • 使用不同能量的Ne、Ar和Cu离子,通过铝衰减器改变LET。
    • 实验包括恒定粒子数实验和粒子数至失效实验。
  4. 实验结果

    • 观察到重离子诱导的栅介质退化,包括软击穿(SBD)和硬击穿(HBD)事件。
    • 发现辐射诱导的击穿与辐射引起的电荷注入在介质中形成的缺陷相关导电路径有关。
    • 通过辐射后的特性测量,表明介质内部积累了辐射诱导的缺陷。
  5. 电压依赖性

    • 栅电压和漏电压对介质退化有重要影响。
    • 在关断状态下,介质和AlGaN界面下可以收集大量瞬态离子诱导的电荷,这是SEGR的最坏情况。
  6. LET和通量依赖性

    • 粒子LET和通量对栅介质退化过程有显著影响。
    • 高LET值的粒子需要较低的电场来启动击穿过程,并且在相同电场应力下可以诱导更大的栅漏电流。
  7. 结论

    • 研究结果表明,偏置条件、入射离子LET和辐射通量是决定缺陷生成率的关键因素。
    • 重离子辐射导致的SBD和HBD共享相同的统计和物理起源,并与介质中的缺陷相关导电路径有关。

这篇论文提供了对AlGaN/GaN HEMT在辐射环境下性能影响的深入理解,对于设计和应用这些器件在高辐射环境中具有重要意义。

相关推荐
deephub11 小时前
使用 tsfresh 和 AutoML 进行时间序列特征工程
人工智能·python·机器学习·特征工程·时间序列
静听松涛13311 小时前
从模式识别到逻辑推理的认知跨越
人工智能·机器学习
啊阿狸不会拉杆11 小时前
《机器学习》第四章-无监督学习
人工智能·学习·算法·机器学习·计算机视觉
明月醉窗台11 小时前
Ryzen AI --- AMD XDNA架构的部署框架
人工智能·opencv·目标检测·机器学习·计算机视觉·架构
啊阿狸不会拉杆11 小时前
《机器学习》第三章 - 监督学习
人工智能·深度学习·学习·机器学习·计算机视觉
Java程序员威哥11 小时前
用Java玩转机器学习:协同过滤算法实战(比Python快3倍的工程实现)
java·开发语言·后端·python·算法·spring·机器学习
Lips61111 小时前
第六章 支持向量机
算法·机器学习·支持向量机
AI工具测评大师11 小时前
如何有效降低英文文本的Turnitin AI检测率?安全指南与工具推荐
人工智能·深度学习·自然语言处理·文心一言·ai写作·ai自动写作
陈天伟教授11 小时前
人工智能应用-机器视觉:绘画大师 05.还原毕加索的隐藏画
人工智能·神经网络·数码相机·生成对抗网络·dnn
sunfove12 小时前
从数据到智能:机器学习核心方法的数学原理与全景解构
人工智能·机器学习