【氮化镓】GaN HEMT SEEs效应影响因素和机制

  1. 研究背景:AlGaN/GaN HEMT因其在高电压、高温和高频率下的操作能力而受到关注,尤其在航空航天和汽车应用中,其辐射响应变得尤为重要。重离子辐射可能导致绝缘体失效,即单事件效应(SEEs)引起的栅介质击穿。

  2. 实验目的:研究AlGaN/GaN HEMT在不同偏压、离子LET(线性能量传递)、辐射通量和总粒子数下对重离子辐射的耐受性。

  3. 实验方法

    • 使用Texas Instruments制造的600 V GaN功率级的关键组件进行测试。
    • 在Texas A&M University的辐射效应设施中进行重离子辐射实验。
    • 使用不同能量的Ne、Ar和Cu离子,通过铝衰减器改变LET。
    • 实验包括恒定粒子数实验和粒子数至失效实验。
  4. 实验结果

    • 观察到重离子诱导的栅介质退化,包括软击穿(SBD)和硬击穿(HBD)事件。
    • 发现辐射诱导的击穿与辐射引起的电荷注入在介质中形成的缺陷相关导电路径有关。
    • 通过辐射后的特性测量,表明介质内部积累了辐射诱导的缺陷。
  5. 电压依赖性

    • 栅电压和漏电压对介质退化有重要影响。
    • 在关断状态下,介质和AlGaN界面下可以收集大量瞬态离子诱导的电荷,这是SEGR的最坏情况。
  6. LET和通量依赖性

    • 粒子LET和通量对栅介质退化过程有显著影响。
    • 高LET值的粒子需要较低的电场来启动击穿过程,并且在相同电场应力下可以诱导更大的栅漏电流。
  7. 结论

    • 研究结果表明,偏置条件、入射离子LET和辐射通量是决定缺陷生成率的关键因素。
    • 重离子辐射导致的SBD和HBD共享相同的统计和物理起源,并与介质中的缺陷相关导电路径有关。

这篇论文提供了对AlGaN/GaN HEMT在辐射环境下性能影响的深入理解,对于设计和应用这些器件在高辐射环境中具有重要意义。

相关推荐
冰西瓜6007 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
过期的秋刀鱼!9 小时前
神经网络-代码中的推理
人工智能·深度学习·神经网络
2401_828890649 小时前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
Zzz 小生11 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
码农小韩13 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
冰西瓜60013 小时前
深度学习的数学原理(八)—— 过拟合与正则化
人工智能·深度学习
Christo313 小时前
windows系统配置openclaw
人工智能·机器学习
小李独爱秋13 小时前
机器学习与深度学习实验项目3 卷积神经网络实现图片分类
人工智能·深度学习·机器学习·分类·cnn·mindspore·模式识别
陈天伟教授14 小时前
人工智能应用- 搜索引擎:04. 网页重要性评估
人工智能·神经网络·搜索引擎·语言模型·自然语言处理
audyxiao00114 小时前
AI一周重要会议和活动概览(2.16-2.22)
人工智能·机器学习·一周会议与活动