李沐67_自注意力——自学笔记

python 复制代码
!pip install --upgrade d2l
python 复制代码
import math
import torch
from torch import nn
from d2l import torch as d2l

自注意力

代码片段是基于多头注意力对一个张量完成自注意力的计算

python 复制代码
num_hiddens, num_heads = 100, 5
attention = d2l.MultiHeadAttention(num_hiddens, num_heads, 0.5) ## 此处修改,只剩下一个num_hiddens
attention.eval()
复制代码
/usr/local/lib/python3.10/dist-packages/torch/nn/modules/lazy.py:181: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment.
  warnings.warn('Lazy modules are a new feature under heavy development '





MultiHeadAttention(
  (attention): DotProductAttention(
    (dropout): Dropout(p=0.5, inplace=False)
  )
  (W_q): LazyLinear(in_features=0, out_features=100, bias=False)
  (W_k): LazyLinear(in_features=0, out_features=100, bias=False)
  (W_v): LazyLinear(in_features=0, out_features=100, bias=False)
  (W_o): LazyLinear(in_features=0, out_features=100, bias=False)
)
python 复制代码
batch_size, num_queries, valid_lens = 2, 4, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens))
attention(X, X, X, valid_lens).shape
复制代码
torch.Size([2, 4, 100])

位置编码

PositionalEncoding, 为了使用序列的顺序信息,通过在输入表示中添加 位置编码(positional encoding)来注入绝对的或相对的位置信息。 位置编码可以通过学习得到也可以直接固定得到。

python 复制代码
class PositionalEncoding(nn.Module):
    """位置编码"""
    def __init__(self, num_hiddens, dropout, max_len=1000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(dropout)
        # 创建一个足够长的P
        self.P = torch.zeros((1, max_len, num_hiddens))
        X = torch.arange(max_len, dtype=torch.float32).reshape(
            -1, 1) / torch.pow(10000, torch.arange(
            0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)
        self.P[:, :, 0::2] = torch.sin(X)
        self.P[:, :, 1::2] = torch.cos(X)

    def forward(self, X):
        X = X + self.P[:, :X.shape[1], :].to(X.device)
        return self.dropout(X)

在位置嵌入矩阵

中, 行代表词元在序列中的位置,列代表位置编码的不同维度。 从下面的例子中可以看到位置嵌入矩阵的第6列和第7列的频率高于第8列和第9列。 第6列和第7列之间的偏移量(第8列和第9列相同)是由于正弦函数和余弦函数的交替。

python 复制代码
encoding_dim, num_steps = 32, 60
pos_encoding = PositionalEncoding(encoding_dim, 0)
pos_encoding.eval()
X = pos_encoding(torch.zeros((1, num_steps, encoding_dim)))
P = pos_encoding.P[:, :X.shape[1], :]
d2l.plot(torch.arange(num_steps), P[0, :, 6:10].T, xlabel='Row (position)',
         figsize=(6, 2.5), legend=["Col %d" % d for d in torch.arange(6, 10)])

绝对位置信息

python 复制代码
for i in range(8):
    print(f'{i}的二进制是:{i:>03b}')
复制代码
0的二进制是:000
1的二进制是:001
2的二进制是:010
3的二进制是:011
4的二进制是:100
5的二进制是:101
6的二进制是:110
7的二进制是:111

二进制表示中,较高比特位的交替频率低于较低比特位, 与下面的热图所示相似,只是位置编码通过使用三角函数在编码维度上降低频率。 由于输出是浮点数,因此此类连续表示比二进制表示法更节省空间。

python 复制代码
P = P[0, :, :].unsqueeze(0).unsqueeze(0)
d2l.show_heatmaps(P, xlabel='Column (encoding dimension)',
                  ylabel='Row (position)', figsize=(3.5, 4), cmap='Blues')
相关推荐
ningmengjing_10 小时前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
四谎真好看10 小时前
Java 学习笔记(进阶篇2)
java·笔记·学习
程序猿炎义10 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
THMAIL11 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
relis11 小时前
解密llama.cpp中的batch与ubatch:深度学习推理优化的内存艺术
深度学习·batch·llama
中國龍在廣州11 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
nuclear201111 小时前
Python 实现 Markdown 与 Word 高保真互转(含批量转换)
python·word转markdown·markdown转word·word转md·md转word
山烛11 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
THMAIL12 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归